• 제목/요약/키워드: Pleckstrin homology domain

검색결과 14건 처리시간 0.025초

Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase

  • Kim, Mi Kyoung;Hwang, Won Chan;Min, Do Sik
    • BMB Reports
    • /
    • 제54권2호
    • /
    • pp.112-117
    • /
    • 2021
  • Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.

Regulation of AKT Activity by Inhibition of the Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interaction Using Flavonoids

  • Kang, Yerin;Jang, Geupil;Ahn, Seunghyun;Lee, Youngshim;Shin, Soon Young;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1401-1411
    • /
    • 2018
  • The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.

T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis

  • Kim, Sumi;Lee, Nari;Park, Eui-Soon;Yun, Hyeongseok;Ha, Tae-Uk;Jeon, Hyoeun;Yu, Jiyeon;Choi, Seunga;Shin, Bongjin;Yu, Jungeun;Rhee, Sang Dal;Choi, Yongwon;Rho, Jaerang
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.1-12
    • /
    • 2021
  • The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.

Point Mutations in the Split PLC-γ1 PH Domain Modulate Phosphoinositide Binding

  • Kim, Sung-Kuk;Wee, Sung-Mo;Chang, Jong-Soo;Kwon, Taeg-Kyu;Min, Do-Sik;Lee, Young-Han;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.720-725
    • /
    • 2004
  • A number of signaling molecules contain small pleckstrin homology (PH) domains capable of binding phosphoinositides or proteins. Phospholipase C (PLC)-${\gamma}1$ has two putative PH domains, an $NH_2$-terminal (PH1) and a split PH domain ($nPH_2$ and $cPH_2$). We previously reported that the split PH domain of PLC-${\gamma}1$ binds to phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)$P_2$) (Chang et al., 2002). To identify the amino acid residues responsible for binding with PI(4)P and PI(4,5)$P_2$, we used site-directed mutagenesis to replace each amino acid in the variable loop-1 (VL-1) region of the PLC-${\gamma}1$ $nPH_2$ domain with alanine (a neutral amino acid). The phosphoinositide-binding affinity of these mutant molecules was analyzed by Dot-blot assay followed by ECL detection. We found that two PLC-${\gamma}1$ nPH2 domain mutants, P500A and H503A, showed reduced affinities for phosphoinositide binding. Furthermore, these mutant PLC-${\gamma}1$ molecules showed reduced PI(4,5)$P_2$ hydrolysis. Using green fluorescent protein (GFP) fusion protein system, we showed that both $PH_1$ and $nPH_2$ domains are responsible for membrane-targeted translocation of PLC-${\gamma}1$ upon serum stimulation. Together, our data reveal that the amino acid residues $Pro^{500}$ and $His^{503}$ are critical for binding of PLC-${\gamma}1$ to one of its substrates, PI(4,5)$P_2$ in the membrane.

Heat Shock Protein $90{\beta}$ Inhibits Phospholipase $C{\gamma}-1$ Activity in vitro

  • ;;장종수
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.419-425
    • /
    • 2006
  • Phospholipase $C-{\gamma}1\;(PLC-{\gamma}1)$ is an important signaling molecule for cell proliferation and differentiation. $PLC-{\gamma}1$ contains two pleckstrin homology (PH) domains, which are responsible for protein-protein interaction and protein-lipid interaction. $PLC-{\gamma}1$ also has two Src homology (SH)2 domains and a SH3 domain, which are responsible for protein- protein interaction. To identity proteins that specifically binds to PH domain of $PLC-{\gamma}1$, we prepared and incubated the glutathione S-transferase(GST)-fused PH domains of $PLC-{\gamma}1$ with COS7 cell lysate. We found that 90 kDa protein specifically binds to PH domain of $PLC-{\gamma}1$. By matrix-assisted laser desorption ionization time of flight-mass spectrometry, the 90 kDa protein revealed to be heat shock protein (Hsp) $90{\beta}$. Hsp $90{\beta}$ is a molecular chaperone that stabilizes and facilitates the folding of proteins that are involved in cell signaling, including receptors for steroids hormones and a variety of protein kinases. To know whether Hsp $90{\beta}$ affects on $PLC-{\gamma}1$ activity, we performed $PIP_2$ hydrolyzing activity of $PLC-{\gamma}1$ in the presence of purified Hsp $90{\beta}$ in vitro. Our results show that the Hsp $90{\beta}$ dose-dependently inhibits the enzymatic activity of $PLC-{\gamma}1$ and further suggest that Hsp $90{\beta}$ regulates cell growth and differentiation via regulation of $PLC-{\gamma}1$ activity.

  • PDF

Characterization of Osh3, an Oxysterol-binding Protein, in Filamentous Growth of Saccharomyces cerevisiae and Candida albicans

  • Hur, Hyang-Sook;Ryu, Ji-Ho;Kim, Kwang-Hoon;Kim, Jin-Mi
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.523-529
    • /
    • 2006
  • OSH3 is one of the seven yeast homologues of the oxysterol binding proteins (OSBPs) which have the major binding affinity to the oxysterols and function as regulator of cholesterol biosynthesis in mammals. Mutational analysis of OSH3 showed that OSH3 plays a regulatory role in the yeast-to-hyphal transition through its oxysterol-binding domain in Saccharomyces cerevisiae. The OSH3 gene was also identified in the pathogenic yeast Candida albicans. Deletion of OSH3 caused a defect in the filamentous growth, which is the major cause of the C. albicans pathogencity. The filamentation defect of the mutation in the MAPK-associated transcription factor, namely $cph1{\Delta}$ was suppressed by overexpression of OSH3. These findings suggest the regulatory roles of OSH3 in the yeast filamentous growth and the functional conservations of OSH3 in S. cerevisiae and C. albicans.

A WD40 Repeat Protein, Arabidopsis Sec13 Homolog 1, May Play a Role in Vacuolar Trafficking by Controlling the Membrane Association of AtDRP2A

  • Lee, Myoung Hui;Lee, Sung Hoon;Kim, Heyran;Jin, Jing Bo;Kim, Dae Heon;Hwang, Inhwan
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.210-219
    • /
    • 2006
  • Dynamin-related protein 2A (AtDRP2A, formally ADL6), a member of the dynamin family, is critical for protein trafficking from the TGN to the central vacuole. However, the mechanism controlling its activity is not well understood in plant cells. We isolated Arabidopsis sec13 homolog1 (AtSeh1) that interacts with AtDRP2A by a yeast two-hybrid screening. AtSeh1 has four WD40 motifs and amino acid sequence homology to Sec13, a component of COPII vesicles. Coimmunoprecipitation and protein pull-down experiments demonstrated specific interaction between AtSeh1 and AtDRP2A. AtSeh1 bound to the pleckstrin homology domain of AtDRP2A in competition with the C-terminal domain of the latter, and this resulted in inhibition of the interaction between AtDRP2A and PtdIns3P in vitro. AtSeh1 localized to multiple locations: the nucleus, the prevacuolar compartment and the Golgi complex. Based on these results we propose that AtSeh1 plays a role in regulating cycling of AtDRP2A between membrane-bound and soluble forms.

Emerging roles of PHLPP phosphatases in metabolism

  • Cha, Jong-Ho;Jeong, Yelin;Oh, Ah-Reum;Lee, Sang Bae;Hong, Soon-Sun;Kim, KyeongJin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.451-457
    • /
    • 2021
  • Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases.

Screening of Specific Genes Expressed in the Swine Tissues and Development of a Functional cDNA Chip

  • Kim, Chul Wook;Chang, Kyu Tae;Hong, Yeon Hee;Kwon, Eun Jung;Jung, Won Yong;Cho, Kwang Keun;Chung, Ki Hwa;Kim, Byeong Woo;Lee, Jung Gyu;Yeo, Jung-Sou;Kang, Yang Su;Joo, Young Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권7호
    • /
    • pp.933-941
    • /
    • 2005
  • To develop a functional cDNA chip, specific genes expressed in the tissues of swine Kagoshima Berkshire were screened. A total of 4,434 ESTs were obtained by constructing a cDNA library from total RNA isolated from the muscle and fat tissues, affirming their functions by investigating similarity of nucleotide sequences with the database at the NCBI. Among them, 1,230 ESTs were confirmed as novel genes, which, to date, have not been identified. Attaching the genes to a cDNA microarray slide revealed expression patterns of genes in muscle and fat according to the growth stages of swine. As specific genes expressed in the muscle tissues of swine with body weight of 30 kg, 60 genes including actin, myosin, tropomysin, transfer RNA-trp synthetase, Kel-like protein 23, KIAA0182 and COI, Foocen-m, etc were obtained. In addition, 18 novel genes were obtained. As specific genes expressed in fat tissues of swine with body weight of 30 kg, 47 genes including annexin II, Collagen, Fibronectin, Pleckstrin homology domain, serine protease, etc were obtained. 21 novel genes were also obtained. The genes specifically expressed in the muscle and fat tissues of swine affect contraction and relaxation of the muscle and the fat. However, studies on the expression mechanisms of the genes are insufficient. To reveal species of structural genes in swine muscle and fat tissue, interrelation studies in expression and function of genes by using the cDNA chip should be conducted.

Real-time Imaging of Inositol 1,4,5-trisphosphate Movement in Mouse Salivary Gland Cells

  • Hong, Jeong-Hee;Lee, Syng-Ill;Shin, Dong-Min
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.125-129
    • /
    • 2008
  • Inositol 1,4,5-trisphosphate ($IP_3$) plays an important role in the release of $Ca^{2+}$ from intracellular stores into the cytoplasm in a variety of cell types. $IP_3$ translocation dynamics have been studied in response to many types of cell signals. However, the dynamics of cytosolic $IP_3$ in salivary acinar cells are unclear. A green fluorescent protein (GFP)-tagged pleckstrin homology domain (PHD) was constructed and introduced into a phospholipase C ${\delta}1$ (PLC ${\delta}1$) transgenic mouse, and then the salivary acinar cells were isolated. GFP-PHD was heterogeneously localized at the plasma membrane and intracellular organelles in submandibular gland and parotid gland cells. Application of trypsin, a G protein-coupled receptor activator, to the two types of cells caused an increase in GFP fluorescence in the cell cytoplasm. The observed time course of trypsin-evoked $IP_3$ movement in acinar cells was independent of cell polarity, and the fluorescent label showed an immediate increase throughout the cells. These results suggest that GFP-PHD in many tissues of transgenic mice, including non-cultured primary cells, can be used as a model for examination of $IP_3$ intracellular dynamics.