Acknowledgement
This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1005631 to JHC, 2020R1C1C1014281 to SBL, 2021R1A5A8029876 to SBL, 2020R1C1C1004015 to KK and 2021R1A5A2031612 to SSH and KK) and INHA UNIVERSITY Research Grant (JHC and KK).
References
- Shimizu K, Okada M, Takano A and Nagai K (1999) SCOP, a novel gene product expressed in a circadian manner in rat suprachiasmatic nucleus. FEBS Lett 458, 363-369 https://doi.org/10.1016/S0014-5793(99)01190-4
- Gao T, Furnari F and Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18, 13-24 https://doi.org/10.1016/j.molcel.2005.03.008
- Brognard J and Newton AC (2008) PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol Metab 19, 223-230 https://doi.org/10.1016/j.tem.2008.04.001
- Brognard J, Sierecki E, Gao T and Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25, 917-931 https://doi.org/10.1016/j.molcel.2007.02.017
- Baffi TR, Cohen-Katsenelson K and Newton AC (2021) PHLPPing the script: emerging roles of PHLPP phosphatases in cell signaling. Annu Rev Pharmacol Toxicol 61, 723-743 https://doi.org/10.1146/annurev-pharmtox-031820-122108
- Mendoza MC and Blenis J (2007) PHLPPing it off: phosphatases get in the Akt. Mol Cell 25, 798-800 https://doi.org/10.1016/j.molcel.2007.03.007
- Molina JR, Agarwal NK, Morales FC et al (2012) PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 31, 1264-1274 https://doi.org/10.1038/onc.2011.324
- Reyes G, Niederst M, Cohen-Katsenelson K et al (2014) Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output. Proc Natl Acad Sci U S A 111, E3957-3965
- Ohwada W, Tanno M, Yano T et al (2020) Distinct intra-mitochondrial localizations of pro-survival kinases and regulation of their functions by DUSP5 and PHLPP-1. Biochim Biophys Acta Mol Basis Dis 1866, 165851 https://doi.org/10.1016/j.bbadis.2020.165851
- Aviv Y and Kirshenbaum LA (2010) Novel phosphatase PHLPP-1 regulates mitochondrial Akt activity and cardiac cell survival. Circ Res 107, 448-450 https://doi.org/10.1161/CIRCRESAHA.110.225896
- Brazil DP and Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26, 657-664 https://doi.org/10.1016/S0968-0004(01)01958-2
- Gao T, Brognard J and Newton AC (2008) The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem 283, 6300-6311 https://doi.org/10.1074/jbc.M707319200
- Tovell H and Newton AC (2021) PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 478, 341-355 https://doi.org/10.1042/BCJ20190765
- Liu J, Stevens PD, Li X, Schmidt MD and Gao T (2011) PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol Cell Biol 31, 4917-4927 https://doi.org/10.1128/MCB.05799-11
- Baffi TR, Van AN, Zhao W, Mills GB and Newton AC (2019) Protein kinase C quality control by phosphatase phlpp1 unveils loss-of-function mechanism in cancer. Mol Cell 74, 378-392 e375 https://doi.org/10.1016/j.molcel.2019.02.018
- Zhang LL, Cao FF, Wang Y et al (2015) The protein kinase C (PKC) inhibitors combined with chemotherapy in the treatment of advanced non-small cell lung cancer: meta-analysis of randomized controlled trials. Clin Transl Oncol 17, 371-377 https://doi.org/10.1007/s12094-014-1241-3
- Hsu AH, Lum MA, Shim KS et al (2018) Crosstalk between PKCalpha and PI3K/AKT signaling is tumor suppressive in the endometrium. Cell Rep 24, 655-669 https://doi.org/10.1016/j.celrep.2018.06.067
- Qiao M, Wang Y, Xu X et al (2010) Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis. Mol Cell 38, 512-523 https://doi.org/10.1016/j.molcel.2010.03.017
- Burnett PE, Barrow RK, Cohen NA, Snyder SH and Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 95, 1432-1437 https://doi.org/10.1073/pnas.95.4.1432
- Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J and Yonezawa K (1999) Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 274, 34493-34498 https://doi.org/10.1074/jbc.274.48.34493
- Ma XM and Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10, 307-318 https://doi.org/10.1038/nrm2672
- Wellbrock C, Karasarides M and Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5, 875-885 https://doi.org/10.1038/nrm1498
- Li X, Stevens PD, Liu J et al (2014) PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice. Gastroenterology 146, 1301-1312 e1301-1310 https://doi.org/10.1053/j.gastro.2014.02.003
- Ellwood-Yen K, Graeber TG, Wongvipat J et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223-238 https://doi.org/10.1016/S1535-6108(03)00197-1
- McKeown MR and Bradner JE (2014) Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 4, a014266 https://doi.org/10.1101/cshperspect.a014266
- Nowak DG, Katsenelson KC, Watrud KE et al (2019) The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J Cell Biol 218, 1943-1957 https://doi.org/10.1083/jcb.201902048
- Chang DW, Claassen GF, Hann SR and Cole MD (2000) The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol 20, 4309-4319 https://doi.org/10.1128/MCB.20.12.4309-4319.2000
- Hemann MT, Bric A, Teruya-Feldstein J et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436, 807-811 https://doi.org/10.1038/nature03845
- Schwartz JP and Jungas RL (1971) Studies on the hormone-sensitive lipase of adipose tissue. J Lipid Res 12, 553-562 https://doi.org/10.1016/S0022-2275(20)39474-8
- Kim K, Kang JK, Jung YH et al (2021) Adipocyte PHLPP2 inhibition prevents obesity-induced fatty liver. Nat Commun 12, 1822 https://doi.org/10.1038/s41467-021-22106-2
- Chang RM, Yang H, Fang F, Xu JF and Yang LY (2014) MicroRNA-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase. Hepatology 60, 1251-1263 https://doi.org/10.1002/hep.27221
- Cai J, Fang L, Huang Y et al (2013) miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res 73, 5402-5415 https://doi.org/10.1158/0008-5472.CAN-13-0297
- Gao G, Kun T, Sheng Y et al (2013) SGT1 regulates Akt signaling by promoting beta-TrCP-dependent PHLPP1 degradation in gastric cancer cells. Mol Biol Rep 40, 2947-2953 https://doi.org/10.1007/s11033-012-2363-8
- Li X, Stevens PD, Yang H et al (2013) The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene 32, 471-478 https://doi.org/10.1038/onc.2012.66
- Yu Y, Dai M, Lu A, Yu E and Merlino G (2018) PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 37, 2225-2236 https://doi.org/10.1038/s41388-017-0061-7
- O'Hayre M, Niederst M, Fecteau JF et al (2012) Mechanisms and consequences of the loss of PHLPP1 phosphatase in chronic lymphocytic leukemia (CLL). Leukemia 26, 1689-1692 https://doi.org/10.1038/leu.2012.6
- Smith AJ, Wen YA, Stevens PD, Liu J, Wang C and Gao T (2016) PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells. Oncotarget 7, 7801-7815 https://doi.org/10.18632/oncotarget.6848
- Araujo AR, Rosso N, Bedogni G, Tiribelli C and Bellentani S (2018) Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int 38 Suppl 1, 47-51 https://doi.org/10.1111/liv.13643
- Loomba R and Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10, 686-690 https://doi.org/10.1038/nrgastro.2013.171
- Younossi Z, Anstee QM, Marietti M et al (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15, 11-20 https://doi.org/10.1038/nrgastro.2017.109
- Postic C and Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118, 829-838 https://doi.org/10.1172/JCI34275
- Kim K and Kim KH (2020) Targeting of secretory proteins as a therapeutic strategy for treatment of nonalcoholic steatohepatitis (NASH). Int J Mol Sci 21, 2296 https://doi.org/10.3390/ijms21072296
- Savage DB and Semple RK (2010) Recent insights into fatty liver, metabolic dyslipidaemia and their links to insulin resistance. Curr Opin Lipidol 21, 329-336 https://doi.org/10.1097/MOL.0b013e32833b7782
- Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-in-sensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14, 1296-1302 https://doi.org/10.1016/j.cub.2004.06.054
- Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128 https://doi.org/10.1038/ncb1183
- Laplante M and Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149, 274-293 https://doi.org/10.1016/j.cell.2012.03.017
- Kim K, Qiang L, Hayden MS, Sparling DP, Purcell NH and Pajvani UB (2016) mTORC1-independent raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun 7, 10255 https://doi.org/10.1038/ncomms10255
- Kim K and Pajvani UB (2016) "Free" Raptor - a novel regulator of metabolism. Cell Cycle 15, 1174-1175 https://doi.org/10.1080/15384101.2016.1159835
- Kim K, Ryu D, Dongiovanni P et al (2017) Degradation of PHLPP2 by KCTD17, via a glucagon-dependent pathway, promotes hepatic steatosis. Gastroenterology 153, 1568-1580 e1510 https://doi.org/10.1053/j.gastro.2017.08.039
- Weyer C, Bogardus C, Mott DM and Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104, 787-794 https://doi.org/10.1172/JCI7231
- Christensen AA and Gannon M (2019) The beta cell in type 2 diabetes. Curr Diab Rep 19, 81 https://doi.org/10.1007/s11892-019-1196-4
- Hribal ML, Perego L, Lovari S et al (2003) Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN beta cell line and human islets of Langerhans. FASEB J 17, 1340-1342 https://doi.org/10.1096/fj.02-0685fje
- Ye R, Onodera T and Scherer PE (2019) Lipotoxicity and beta cell maintenance in obesity and type 2 diabetes. J Endocr Soc 3, 617-631 https://doi.org/10.1210/js.2018-00372
- Elghazi L, Balcazar N and Bernal-Mizrachi E (2006) Emerging role of protein kinase B/Akt signaling in pancreatic betacell mass and function. Int J Biochem Cell Biol 38, 157-163 https://doi.org/10.1016/j.biocel.2005.08.017
- Hribal ML, Mancuso E, Arcidiacono GP et al (2020) The phosphatase PHLPP2 plays a key role in the regulation of pancreatic beta-cell survival. Int J Endocrinol 2020, 1027386
- Sesti G, Federici M, Lauro D, Sbraccia P and Lauro R (2001) Molecular mechanism of insulin resistance in type 2 diabetes mellitus: role of the insulin receptor variant forms. Diabetes Metab Res Rev 17, 363-373 https://doi.org/10.1002/dmrr.225
- Andreozzi F, Procopio C, Greco A et al (2011) Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia 54, 1879-1887 https://doi.org/10.1007/s00125-011-2116-6
- Nigro C, Mirra P, Prevenzano I et al (2018) miR-214-dependent increase of PHLPP2 levels mediates the impairment of insulin-stimulated Akt activation in mouse aortic endothelial cells exposed to methylglyoxal. Int J Mol Sci 19, 522 https://doi.org/10.3390/ijms19020522
- Sun X, Lin J, Zhang Y et al (2016) MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res 118, 810-821 https://doi.org/10.1161/CIRCRESAHA.115.308166
- Mathur A, Pandey VK and Kakkar P (2017) PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 233, R185-R198 https://doi.org/10.1530/JOE-17-0081
- Xiong X, Wen YA, Mitov MI, M CO, Miyamoto S and Gao T (2017) PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells. Cell Death Discov 3, 16103 https://doi.org/10.1038/cddiscovery.2016.103
- Wu J, Dong T, Chen T et al (2020) Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism 103, 154006 https://doi.org/10.1016/j.metabol.2019.154006
- Goodyear LJ and Kahn BB (1998) Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49, 235-261 https://doi.org/10.1146/annurev.med.49.1.235
- Cozzone D, Frojdo S, Disse E et al (2008) Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia 51, 512-521 https://doi.org/10.1007/s00125-007-0913-8
- Johnson AM and Olefsky JM (2013) The origins and drivers of insulin resistance. Cell 152, 673-684 https://doi.org/10.1016/j.cell.2013.01.041
- Behera S, Kapadia B, Kain V et al (2018) ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochim Biophys Acta Mol Basis Dis 1864, 1702-1716 https://doi.org/10.1016/j.bbadis.2018.02.019
- Newton AC and Trotman LC (2014) Turning off AKT: PHLPP as a drug target. Annu Rev Pharmacol Toxicol 54, 537-558 https://doi.org/10.1146/annurev-pharmtox-011112-140338