A WD40 Repeat Protein, Arabidopsis Sec13 Homolog 1, May Play a Role in Vacuolar Trafficking by Controlling the Membrane Association of AtDRP2A

  • Lee, Myoung Hui (Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Sung Hoon (Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Heyran (Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Jin, Jing Bo (Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Dae Heon (Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Hwang, Inhwan (Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Received : 2006.07.10
  • Accepted : 2006.07.18
  • Published : 2006.10.31

Abstract

Dynamin-related protein 2A (AtDRP2A, formally ADL6), a member of the dynamin family, is critical for protein trafficking from the TGN to the central vacuole. However, the mechanism controlling its activity is not well understood in plant cells. We isolated Arabidopsis sec13 homolog1 (AtSeh1) that interacts with AtDRP2A by a yeast two-hybrid screening. AtSeh1 has four WD40 motifs and amino acid sequence homology to Sec13, a component of COPII vesicles. Coimmunoprecipitation and protein pull-down experiments demonstrated specific interaction between AtSeh1 and AtDRP2A. AtSeh1 bound to the pleckstrin homology domain of AtDRP2A in competition with the C-terminal domain of the latter, and this resulted in inhibition of the interaction between AtDRP2A and PtdIns3P in vitro. AtSeh1 localized to multiple locations: the nucleus, the prevacuolar compartment and the Golgi complex. Based on these results we propose that AtSeh1 plays a role in regulating cycling of AtDRP2A between membrane-bound and soluble forms.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Ahmed, S. U., Rojo, E., Kovaleva, V., Venkataraman, S., Dombrowski, J. E., et al. (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide- containing vacuolar proteins in Arabidopsis thaliana. J. Cell Biol. 149, 1335-1344 https://doi.org/10.1083/jcb.149.7.1335
  2. Babst, M. (2005) A protein's final ESCRT. Traffic 6, 2-9
  3. Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., et al. (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895-907 https://doi.org/10.1016/0092-8674(94)90138-4
  4. Bassham, D. C. and Raikhel, N. V. (1999) The pre-vacuolar t- SNARE AtPEP12p forms a 20S complex that dissociates in the presence of ATP. Plant J. 19, 599-603 https://doi.org/10.1046/j.1365-313X.1999.00552.x
  5. Bassham, D. C. and Raikhel, N. V. (2000) Unique features of the plant vacuolar sorting machinery. Curr. Opin. Cell Biol. 12, 491-495 https://doi.org/10.1016/S0955-0674(00)00121-6
  6. Bassham, D. C., Sanderfoot, A. A., Kovaleva, V., Zheng, H., and Raikhel, N. V. (2000) AtVPS45 complex formation at the trans-Golgi network. Mol. Biol. Cell 11, 2251-2265 https://doi.org/10.1091/mbc.11.7.2251
  7. Burd, C. G., Mustol, P. A., Schu, P. V., and Emr, S. D. (1996) A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol. Cell Biol. 16, 2369-2377 https://doi.org/10.1128/MCB.16.5.2369
  8. Carter, C. J., Bednarek, S. Y., and Raikhel, N. V. (2004) Membrane trafficking in plants: new discoveries and approaches. Curr. Opin. Plant Biol. 7, 701-707 https://doi.org/10.1016/j.pbi.2004.09.016
  9. Conibear, E. and Stevens, T. H. (1998) Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404, 211-230 https://doi.org/10.1016/S0167-4889(98)00058-5
  10. Corvera, S., D'Arrigo, A., and Stenmark, H. (1999) Phosphoinositides in membrane traffic. Curr. Opin. Cell Biol. 11, 460-465 https://doi.org/10.1016/S0955-0674(99)80066-0
  11. daSilva, L. L., Taylor, J. P., Hadlington, J. L., Hanton, S. L., Snowden, C. J., et al. (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17, 132-148 https://doi.org/10.1105/tpc.104.026351
  12. Denisenko, O., Shnyreva, M., Suzuki, H., and Bomsztyk, K. (1998) Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol. Cell Biol. 18, 5634-5642 https://doi.org/10.1128/MCB.18.10.5634
  13. Eitzen, G. (2003) Actin remodeling to facilitate membrane fusion. Biochim. Biophys. Acta 1641, 175-181 https://doi.org/10.1016/S0167-4889(03)00087-9
  14. Ferguson, K. M., Lemmon, M. A., Schlessinger, J., and Sigler, P. B. (1994) Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell 79, 199- 209 https://doi.org/10.1016/0092-8674(94)90190-2
  15. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245-256 https://doi.org/10.1038/340245a0
  16. Fischer von Mollard, G. and Stevens, T. H. (1999) The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol. Biol. Cell 10, 1719-1732 https://doi.org/10.1091/mbc.10.6.1719
  17. Fontoura, B. M., Blobel, G., and Matunis, M. J. (1999) A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-Kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J. Cell Biol. 144, 1097-1112 https://doi.org/10.1083/jcb.144.6.1097
  18. Foster-Barber, A. and Bishop, J. M. (1998) Src interacts with dynamin and synapsin in neuronal cells. Proc. Natl. Acad. Sci. USA 95, 4673-4677
  19. Ghosh, P. and Kornfeld, S. (2004) The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur. J. Cell Biol. 83, 257-262 https://doi.org/10.1078/0171-9335-00374
  20. Gout, I., Dhand, R., Hiles, I. D., Fry, M. J., Panayotou, G., et al. (1993) The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25-36 https://doi.org/10.1016/S0092-8674(05)80081-9
  21. Gu, F., Crump, C. M., and Thomas, G. (2001) Trans-Golgi network sorting. Cell Mol. Life Sci. 58, 1067-1084 https://doi.org/10.1007/PL00000922
  22. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  23. Herskovits, J. S., Burgess, C. C., Obar, R. A., and Vallee, R. B. (1993) Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565-578 https://doi.org/10.1083/jcb.122.3.565
  24. Hinshaw, J. E. (2000) Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483-519 https://doi.org/10.1146/annurev.cellbio.16.1.483
  25. Hinshaw, J. E. and Schmid, S. L. (1995) Dynamin selfassembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190-192 https://doi.org/10.1038/374190a0
  26. Hohl, I., Robinson, D. G., Chrispeels, M. J., and Hinz, G. (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J. Cell Sci. 109, 2539-2550
  27. James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436
  28. Jin, J. B., Kim, Y. A, Kim, S. J., Lee, S. H., Kim, D. H., et al. (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13, 1511-1526 https://doi.org/10.1105/tpc.13.7.1511
  29. Jurgens, G. (2004) Membrane trafficking in plants. Annu. Rev. Cell Dev. Biol. 20, 481-504 https://doi.org/10.1146/annurev.cellbio.20.082503.103057
  30. Kim, D. H., Eu, Y.-J., Yoo, C. M., Kim, Y. W., Pih, K. T., et al. (2001) Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13, 287-301 https://doi.org/10.1105/tpc.13.2.287
  31. Kim, H., Park, M., Kim, S. J., and Hwang, I. (2005) Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. Plant Cell 17, 888-902 https://doi.org/10.1105/tpc.104.028829
  32. Kirsch, T., Paris, N., Butler, J. M., Beevers, L., and Rogers, J. C. (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc. Natl. Acad. Sci. USA 91, 3403-3407
  33. Lai, M. M., Hong, J. J., Ruggiero, A. M., Burnett, P. E., Slepnev, V. I., et al. (1999) The calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis. J. Biol. Chem. 274, 25963-25966 https://doi.org/10.1074/jbc.274.37.25963
  34. Lam, B. C., Sage, T. L., Bianchi, F., and Blumwald, E. (2002) Regulation of ADL6 activity by its associated molecular network. Plant J. 31, 565-576 https://doi.org/10.1046/j.1365-313X.2002.01377.x
  35. Marks, B., Stowell, M. H., Vallis, Y., Mills, I. G., Gibson, A., et al. (2001) GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231-235 https://doi.org/10.1038/35065645
  36. Miki, H., Miura, K., Matuoka, K., Nakata, T., Hirokawa, N., et al. (1994) Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J. Biol. Chem. 269, 5489-5492
  37. Modregger, J., Ritter, B., Witter, B., Paulsson, M., and Plomann, M. (2000) All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J. Cell Sci. 113, 4511-4521
  38. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  39. Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S., and Vallee, R. B. (1990) Molecular cloning of the microtubule- associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256-261 https://doi.org/10.1038/347256a0
  40. Okamoto, M., Schoch, S., and Sudhof, T. C. (1999) EHSH1/ intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J. Biol. Chem. 274, 18446- 18454 https://doi.org/10.1074/jbc.274.26.18446
  41. Paris, N. and Neuhaus, J. M. (2002) BP-80 as a vacuolar sorting receptor. Plant Mol. Biol. 50, 903-914 https://doi.org/10.1023/A:1021205715324
  42. Park, M., Kim, S. J., Vitale, A., and Hwang, I. (2004) Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. Plant Physiol. 134, 625-639 https://doi.org/10.1104/pp.103.030635
  43. Park, M., Lee, D., Lee, G. J., and Hwang, I. (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J. Cell Biol. 170, 757-767 https://doi.org/10.1083/jcb.200504112
  44. Patki, V., Virbasius, J., Lane, W. S., Toh, B. H., Shpetner, H. S., et al. (1997) Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 94, 7326-7330
  45. Piper, R. C. and Luzio, J. P. (2001) Late endosomes: sorting and partitioning in multivesicular bodies. Traffic 2, 612-621 https://doi.org/10.1034/j.1600-0854.2001.20904.x
  46. Pryer, N. K., Salama, N. R., Schekman, R., and Kaiser, C. A. (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120, 865-875 https://doi.org/10.1083/jcb.120.4.865
  47. Rapoport, T. A. (1986) Protein translocation across and integration into membranes. CRC Crit. Rev. Biochem. 20, 73-137 https://doi.org/10.3109/10409238609115901
  48. Robinson, M. S. and Bonifacino, J. S. (2001) Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444-453 https://doi.org/10.1016/S0955-0674(00)00235-0
  49. Schekman, R. and Orci, L. (1996) Coat proteins and vesicle budding. Science 271, 1526-1533 https://doi.org/10.1126/science.271.5255.1526
  50. Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., et al. (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133-141 https://doi.org/10.1038/43613
  51. Schroder, S. and Ungewickell, E. (1991) Subunit interaction and function of clathrin-coated vesicle adaptors from the Golgi and the plasma membrane. J. Biol. Chem. 266, 7910-7908
  52. Seedorf, K., Kostka, G., Lammers, R., Bashkin, P., Daly, R., et al. (1994) Dynamin binds to SH3 domains of phospholipase C gamma and GRB-2. J. Biol. Chem. 269, 16009-16014
  53. Sengar, A. S., Wang, W., Bishay, J., Cohen, S., and Egan, S. E. (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 18, 1159- 1171 https://doi.org/10.1093/emboj/18.5.1159
  54. Sever, S., Muhlberg, A. B., and Schmid, S. L. (1999) Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481-486 https://doi.org/10.1038/19024
  55. Schmid, S. L. (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511-548 https://doi.org/10.1146/annurev.biochem.66.1.511
  56. Shim, J. and Lee, J. (2005) The AP-3 clathrin-associated complex is essential for embryonic and larval development in Caenorhabditis elegans. Mol. Cells 19, 452-457
  57. Shimada, T., Kuroyanagi, M., Nishimura, M., Hara-Nishimura, I. (1997) A pumpkin 72-kDa membrane protein of precursoraccumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 38, 1414-420 https://doi.org/10.1093/oxfordjournals.pcp.a029138
  58. Siniossoglou, S., Wimmer, C., Rieger, M., Doye, V., Tekotte, H., et al. (1996) A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84, 265-275 https://doi.org/10.1016/S0092-8674(00)80981-2
  59. Stepp, J. D., Huang, K., and Lemmon, S. K. (1997) The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J. Cell Biol. 139, 1761-1774 https://doi.org/10.1083/jcb.139.7.1761
  60. Sweitzer, S. M. and Hinshaw, J. E. (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021-1029 https://doi.org/10.1016/S0092-8674(00)81207-6
  61. Takei, K., Slepnev, V. I., Haucke, V., and De Camilli, P. (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33-39 https://doi.org/10.1038/9004
  62. Traub, L. M. (2005) Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744, 415-437 https://doi.org/10.1016/j.bbamcr.2005.04.005
  63. Tse, Y. C., Mo, B., Hillmer, S., Zhao, M., Lo, S. W., et al. (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16, 672-693 https://doi.org/10.1105/tpc.019703
  64. Wang, L. H., Sudhof, T. C., and Anderson, R. G. (1995) The appendage domain of alpha-adaptin is a high affinity binding site for dynamin. J. Biol. Chem. 270, 10079-10083 https://doi.org/10.1074/jbc.270.17.10079
  65. Zerial, M. and McBride, H. (2001) Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107-117 https://doi.org/10.1038/35052055
  66. Zheng, H., von Mollard, G. F., Kovaleva, V., Stevens, T. H., and Raikhel, N. V. (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans- Golgi network to the prevacuolar compartment. Mol. Biol. Cell 10, 2251-2264 https://doi.org/10.1091/mbc.10.7.2251