• Title/Summary/Keyword: Platform chemicals

Search Result 24, Processing Time 0.023 seconds

Efficient Synthetic Routes of Biomass-derived Platform Chemicals (바이오매스 유래 플랫폼 케미컬들에 대한 효과적인 합성 방법들)

  • Irshad, Mobina;Lee, Seongwoo;Choi, Eunju;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.280-289
    • /
    • 2019
  • 5-hydroxymethylfurfural (HMF) and its derivatives, 2,5-furandicarboxylic acid (FDCA) or 2,5-diformylfuran (DFF), are regarded as the "sleeping giants" owing to their wide range of applications and a good alternative source for the production of significant chemicals in almost all kind of industries. This mini-review briefly covers the aspects related to the syntheses, transformation, and applications for the biomass-derived platform chemicals from past to most recent. Many scientific efforts have continuously been made to find out the environmental benign applicable ways in order to achieve the full advantage of these renewable materials because of not only to protect the globe but also shield the future of new generations. One of the best solutions could be the development and utilization of platform chemicals from the natural biomass.

Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction (Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.293-300
    • /
    • 2020
  • Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 ℃, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 ℃, 0.6 M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.

Design of Integrated Reduction Platform for Food Contaminants Derived from the Environment through Interagency Collaboration in Korea (환경유래 식품오염물질의 범부처 통합 저감화 플랫폼 설계)

  • Ko, Ahra;Heo, Ji-Young;Kang, Young-Woon;Kang, Kil Jin;Chung, Myung-Sub;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • Objectives: Chemicals derived from various environment media contaminates food across the food supply chain. In Korea, levels of contaminants in food have been sporadically measured by monitoring programs of different government agencies. There is difficulty with data compilation and integrated analysis across media. Therefore, the aim of this study was to propose an overall integrated database and analytical platform design for the 'ECO-FOOD NET (Environmental COntaminant reduction platform for FOOD through an interagency collaboration NETwork)', a tool to support the reduction of environmental contaminants in food. Methods: We developed a new data structure and standardized protocols for the compilation of integrated data. In addition, we conducted subject-oriented logical and physical relational database modeling and created the architecture design of the platform. Results: We established a standardized code system related to exposure media and route, analysis method and food matrix. In addition, we designed the seven software modules of 'About the System', 'Introduction to Interagency Work', 'Media-Chemicals Profiles', 'Method Bank', 'Monitoring Data Base', 'Integrated Media Analysis', and 'Risk-Benefit Analysis'. Conclusions: This study will contribute to decision-making as a tool for executing risk management, such as sustainable reduction policies of contaminants in food.

Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity

  • Yamazaki, Hiroshi;Kamiya, Yusuke
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this review, we describe the absorption rates (Caco-2 cell permeability) and hepatic/plasma pharmacokinetics of 53 diverse chemicals estimated by modeling virtual oral administration in rats. To ensure that a broad range of chemical structures is present among the selected substances, the properties described by 196 chemical descriptors in a chemoinformatics tool were calculated for 50,000 randomly selected molecules in the original chemical space. To allow visualization, the resulting chemical space was projected onto a two-dimensional plane using generative topographic mapping. The calculated absorbance rates of the chemicals based on cell permeability studies were found to be inversely correlated to the no-observed-effect levels for hepatoxicity after oral administration, as obtained from the Hazard Evaluation Support System Integrated Platform in Japan (r = -0.88, p < 0.01, n = 27). The maximum plasma concentrations and the areas under the concentration-time curves (AUC) of a varied selection of chemicals were estimated using two different methods: simple one-compartment models (i.e., high-throughput toxicokinetic models) and simplified physiologically based pharmacokinetic (PBPK) modeling consisting of chemical receptor (gut), metabolizing (liver), and central (main) compartments. The results obtained from the two methods were consistent. Although the maximum concentrations and AUC values of the 53 chemicals roughly correlated in the liver and plasma, inconsistencies were apparent between empirically measured concentrations and the PBPK-modeled levels. The lowest-observed-effect levels and the virtual hepatic AUC values obtained using PBPK models were inversely correlated (r = -0.78, p < 0.05, n = 7). The present simplified PBPK models could estimate the relationships between hepatic/plasma concentrations and oral doses of general chemicals using both forward and reverse dosimetry. These methods are therefore valuable for estimating hepatotoxicity.

An Intervention Study on the Implementation of Control Banding in Controlling Exposure to Hazardous Chemicals in Small and Medium-sized Enterprises

  • Terwoert, Jeroen;Verbist, Koen;Heussen, Henri
    • Safety and Health at Work
    • /
    • v.7 no.3
    • /
    • pp.185-193
    • /
    • 2016
  • Background: Management and workers in small and medium-sized enterprises (SMEs) often find it hard to comprehend the requirements related to controlling risks due to exposure to substances. An intervention study was set up in order to support 45 SMEs in improving the management of the risks of occupational exposure to chemicals, and in using the control banding tool and exposure model Stoffenmanager in this process. Methods: A 2-year intervention study was carried out, in which a mix of individual and collective training and support was offered, and baseline and effect measurements were carried out by means of structured interviews, in order to measure progress made. A seven-phase implementation evolutionary ladder was used for this purpose. Success and failure factors were identified by means of company visits and structured interviews. Results: Most companies clearly moved upwards on the implementation evolutionary ladder; 76% of the companies by at least one phase, and 62% by at least two phases. Success and failure factors were described. Conclusion: Active training and coaching helped the participating companies to improve their chemical risk management, and to avoid making mistakes when using and applying Stoffenmanager. The use of validated tools embedded in a community platform appears to support companies to organize and structure their chemical risk management in a business-wise manner, but much depends upon motivated occupational health and safety (OHS) professionals, management support, and willingness to invest time and means.

Design and Development of Sensor-based Virtual Experiment Contents for Smart Phone (스마트폰의 센서를 이용한 가상 실험 콘텐츠의 개발 및 설계)

  • Chung, Kwang Sik;Kwon, Sooyoul;Huang, Wen-Hao
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.161-169
    • /
    • 2013
  • Experiments and practices are critical instructional activities for teaching and learning natural sciences. However, by learning the experimental procedures in advance with the help of Virtual Experiments, natural science majors may address danger of handling chemicals before carrying out experiments in the laboratories. Virtual Experiments, a mobile learning app, provides learners with interactions between the learners and the contents by using the sensor built-in Android-platform smart phones. With the app, learners may handle the chemicals and experiment apparatuses, verify the reactions and assembly of the chemicals and instruments in advance. This paper describes the design and development of the Virtual Experiments in hope to promote the integration of mobile learning apps in order to better engage learners in the laboratories.

Gasification Technology as Energy Utilization Platform of Biomass (바이오매스 활용 기반으로의 가스화 기술)

  • Lee, Jeung W.;Kim, Young D.;Yang, Chang W.;Kim, Kwang S.;Moon, Ji H.;Kim, Beom J.;Jeong, Jae Y.;Park, Ju H.;Park, Min S.;Lee, Uen D.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.175-176
    • /
    • 2012
  • As a carbon neutral fuel, biomass can be converted into various types of high-valued products such as synthetic natural gas (SNG), Hydrogen, Fischer - Tropsch (FT) diesel. and valuable chemicals. In order to make above mentioned products, gasificaion process is essential as energy utilization platform of solid biomass. In this study, state of the art and prospect for biomass gasification technologies are presented.

  • PDF

Value-added Polyolefin Products

  • Ok, Myung-Ahn
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.152-152
    • /
    • 2006
  • Polyolefins show a very healthy growth rate among commodity polymer resins due to their low feedstock prices, recyclable and environmentally friendly characteristics and easily controllable performances. Capacity investment in polyolefin field is now moving from technology region to consumer region and feedstock region. Therefore, key success factors for polyolefin business in the other region such as Korea are cost reduction, development of highly value-added products and new applications and substitution of PVC, PS, PET and other EPs. To add additional value to commodity polyolefin products, high level of platform technology such as catalyst, process and structure-properties relationship is needed. Progress on polyolefin products has been very closely related to catalyst and process technology. According to this trend, SK Corporation has devoted a lot of research effort into development of new value-added polyolefin products based on the proprietary technology platform.

  • PDF

Plant cell culture strategies for the production of natural products

  • Ochoa-Villarreal, Marisol;Howat, Susan;Hong, SunMi;Jang, Mi Ok;Jin, Young-Woo;Lee, Eun-Kyong;Loake, Gary J.
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.149-158
    • /
    • 2016
  • Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties.

Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production

  • Jimenez-Quero, A.;Pollet, E.;Zhao, M.;Marchioni, E.;Averous, L.;Phalip, V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The production of high-value chemicals from natural resources as an alternative for petroleum-based products is currently expanding in parallel with biorefinery. The use of lignocellulosic biomass as raw material is promising to achieve economic and environmental sustainability. Filamentous fungi, particularly Aspergillus species, are already used industrially to produce organic acid as well as many enzymes. The production of lignocellulose-degrading enzymes opens the possibility for direct fungal fermentation towards organic acids such as itaconic acid (IA) and fumaric acid (FA). These acids have wide-range applications and potentially addressable markets as platform chemicals. However, current technologies for the production of these compounds are mostly based on submerged fermentation. This work showed the capacity of two Aspergillus species (A. terreus and A. oryzae) to yield both acids by solid-state fermentation and simultaneous saccharification and fermentation. FA was optimally produced at by A. oryzae in simultaneous saccharification and fermentation (0.54 mg/g wheat bran). The yield of 0.11 mg IA/g biomass by A. oryzae is the highest reported in the literature for simultaneous solid-state fermentation without sugar supplements.