References
- Alwis, K.U., Blount, B.C., Britt, A.S., Patel, D. and Ashley, D.L. (2012) Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal. Chim. Acta, 750, 152-160. https://doi.org/10.1016/j.aca.2012.04.009
- Sexton, K., Adgate, J.L., Fredrickson, A.L., Ryan, A.D., Needham, L.L. and Ashley, D.L. (2006) Using biologic markers in blood to assess exposure to multiple environmental chemicals for inner-city children 3-6 years of age. Environ. Health Persp., 114, 453-459. https://doi.org/10.1289/ehp.8324
- Bell, S.M., Chang, X., Wambaugh, J.F., Allen, D.G., Bartels, M., Brouwer, K.L.R., Casey, W.M., Choksi, N., Ferguson, S.S., Fraczkiewicz, G., Jarabek, A.M., Ke, A., Lumen, A., Lynn, S.G., Paini, A., Price, P.S., Ring, C., Simon, T.W., Sipes, N.S., Sprankle, C.S., Strickland, J., Troutman, J., Wetmore, B.A. and Kleinstreuer, N.C. (2018) In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol. In Vitro, 47, 213-227. https://doi.org/10.1016/j.tiv.2017.11.016
- Rotroff, D.M., Wetmore, B.A., Dix, D.J., Ferguson, S.S., Clewell, H.J., Houck, K.A., LeCluyse, E.L., Andersen, M.E., Judson, R.S., Smith, C.M., Sochaski, M.A., Kavlock, R.J., Boellmann, F., Martin, M.T., Reif, D.M., Wambaugh, J.F. and Thomas, R.S. (2010) Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol. Sci., 117, 348-358. https://doi.org/10.1093/toxsci/kfq220
- Wetmore, B.A., Wambaugh, J.F., Ferguson, S.S., Sochaski, M.A., Rotroff, D.M., Freeman, K., Clewell, H.J., III, Dix, D.J., Andersen, M.E., Houck, K.A., Allen, B., Judson, R.S., Singh, R., Kavlock, R.J., Richard, A.M. and Thomas, R.S. (2012) Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol. Sci., 125, 157-174. https://doi.org/10.1093/toxsci/kfr254
- Wambaugh, J.F., Wetmore, B.A., Pearce, R., Strope, C., Goldsmith, R., Sluka, J.P., Sedykh, A., Tropsha, A., Bosgra, S., Shah, I., Judson, R., Thomas, R.S. and Setzer, R.W. (2015) Toxicokinetic triage for environmental chemicals. Toxicol. Sci., 147, 55-67. https://doi.org/10.1093/toxsci/kfv118
- Wambaugh, J.F., Hughes, M.F., Ring, C.L., MacMillan, D.K., Ford, J., Fennell, T.R., Black, S.R., Snyder, R.W., Sipes, N.S., Wetmore, B., Westerhout, J., Setzer, R.W., Pearce, R., Simmons, J.E. and Thomas, R.S. (2018) Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicol. Sci., 63, 152-169.
- Takano, R., Murayama, N., Horiuchi, K., Kitajima, M., Kumamoto, M., Shono, F. and Yamazaki, H. (2010) Blood concentrations of acrylonitrile in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling. Regul. Toxicol. Pharmacol., 58, 252-258. https://doi.org/10.1016/j.yrtph.2010.06.008
- Yamazaki, H., Suemizu, H., Mitsui, M., Shimizu, M. and Guengerich, F.P. (2016) Combining chimeric mice with humanized liver, mass spectrometry, and physiologically-based pharmacokinetic modeling in toxicology. Chem. Res. Toxicol., 29, 1903-1911. https://doi.org/10.1021/acs.chemrestox.6b00136
- Yamashita, S., Tanaka, Y., Endoh, Y., Taki, Y., Sakane, T., Nadai, T. andSezaki, H. (1997) Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm. Res., 14, 486-491. https://doi.org/10.1023/A:1012103700981
- Hilgers, A.R., Conradi, R.A. and Burton, P.S. (1990) Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res., 7, 902-910. https://doi.org/10.1023/A:1015937605100
- Leonard, M., Creed, E., Brayden, D. and Baird, A.W. (2000) Iontophoresis-enhanced absorptive flux of polar molecules across intestinal tissue in vitro. Pharm. Res., 17, 476-478. https://doi.org/10.1023/A:1007541423500
- Artursson, P., Palm, K. and Luthman, K. (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev., 46, 27-43. https://doi.org/10.1016/S0169-409X(00)00128-9
- Neuhoff, S., Ungell, A.L., Zamora, I. andArtursson, P. (2005) pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur. J. Pharm. Sci., 25, 211-220. https://doi.org/10.1016/j.ejps.2005.02.009
- Kamiya, Y., Otsuka, S., Miura, T., Takaku, H., Yamada, R., Nakazato, M., Nakamura, H., Mizuno, S., Shono, F., Funatsu, K. and Yamazaki, H. (2019) Plasma and hepatic concentrations of chemicals after virtual oral administrations extrapolated using rat plasma data and simple physiologically based pharmacokinetic models. Chem. Res. Toxicol., 32, 211-218. https://doi.org/10.1021/acs.chemrestox.8b00307
- Sakuratani, Y., Zhang, H.Q., Nishikawa, S., Yamazaki, K., Yamada, T., Yamada, J., Gerova, K., Chankov, G., Mekenyan, O. and Hayashi, M. (2013) Hazard Evaluation Support System (HESS) for predicting repeated dose toxicity using toxicological categories. SAR QSAR. Environ. Res., 24, 351-363. https://doi.org/10.1080/1062936X.2013.773375
- Adachi, K., Suemizu, H., Murayama, N., Shimizu, M. and Yamazaki, H. (2015) Human biofluid concentrations of mono(2-ethylhexyl)phthalate extrapolated from pharmacokinetics in chimeric mice with humanized liver administered with di(2-ethylhexyl)phthalate and physiologically based pharmacokinetic modeling. Environ. Toxicol. Pharmacol., 39, 1067-1073. https://doi.org/10.1016/j.etap.2015.02.011
- Miura, T., Uehara, S., Nakazato, M., Kusama, T., Toda, A., Kamiya, Y., Murayama, N., Shimizu, M., Suemizu, H. and Yamazaki, H. (2019) Human plasma and liver concentrations of styrene estimated by combining a simple physiologically based pharmacokinetic model with rodent data. J. Toxicol. Sci., 44, 543-548. https://doi.org/10.2131/jts.44.543
- Miura, T., Suemizu, H., Goto, M., Sakai, N., Iwata, H., Shimizu, M. and Yamazaki, H. (2019) Human urinary concentrations of monoisononyl phthalate estimated using physiologically based pharmacokinetic modeling and experimental pharmacokinetics in humanized-liver mice orally administered with diisononyl phthalate. Xenobiotica, 49, 513-520. https://doi.org/10.1080/00498254.2018.1471753
- Miura, T., Uehara, S., Mizuno, S., Yoshizawa, M., Murayama, N., Kamiya, Y., Shimizu, M., Suemizu, H. and Yamazaki, H. (2019) Steady-state human pharmacokinetics of monobutyl phthalate predicted by physiologically based pharmacokinetic modeling using single-dose data from humanized-liver mice orally administered with dibutyl phthalate. Chem. Res. Toxicol., 32, 333-340. https://doi.org/10.1021/acs.chemrestox.8b00361
- Miyaguchi, T., Suemizu, H., Shimizu, M., Shida, S., Nishiyama, S., Takano, R., Murayama, N. and Yamazaki, H. (2015) Human urine and plasma concentrations of bisphenol A extrapolated from pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and semi-physiological pharmacokinetic modeling. Regul. Toxicol. Pharmacol., 72, 71-76. https://doi.org/10.1016/j.yrtph.2015.03.010
- Shimizu, M. and Yamazaki, H. (2017) Human plasma and urinary metabolic profiles of trimethylamine and trimethylamine N-oxide extrapolated using a simple physiologically based pharmacokinetic model. J. Toxicol. Sci.,42, 485-490. https://doi.org/10.2131/jts.42.485
- Shimizu, M., Suemizu, H., Mizuno, S., Kusama, T., Miura, T., Uehara, S. and Yamazaki, H. (2018) Human plasma concentrations of trimethylamine N-oxide extrapolated using pharmacokinetic modeling based on metabolic profiles of deuterium-labeled trimethylamine in humanized-liver mice. J. Toxicol. Sci., 43, 387-393. https://doi.org/10.2131/jts.43.387
- Takano, R., Murayama, N., Horiuchi, K., Kitajima, M., Shono, F. and Yamazaki, H. (2010) Blood concentrations of 1,4-dioxane in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling. J. Health Sci., 56, 557-565. https://doi.org/10.1248/jhs.56.557
- Tsukada, A., Suemizu, H., Murayama, N., Takano, R., Shimizu, M., Nakamura, M. and Yamazaki, H. (2013) Plasma concentrations of melengestrol acetate in humans extrapolated from the pharmacokinetics established in in vivo experiments with rats and chimeric mice with humanized liver and physiologically based pharmacokinetic modeling. Regul. Toxicol. Pharmacol., 65, 316-324. https://doi.org/10.1016/j.yrtph.2013.01.008
- Yamashita, M., Suemizu, H., Murayama, N., Nishiyama, S., Shimizu, M. and Yamazaki, H. (2014) Human plasma concentrations of herbicidal carbamate molinate extrapolated from the pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and physiologically based pharmacokinetic modeling. Regul. Toxicol. Pharmacol., 70, 214-221. https://doi.org/10.1016/j.yrtph.2014.06.028
- Yamazaki, H., Horiuchi, K., Takano, R., Nagano, T., Shimizu, M., Kitajima, M., Murayama, N. and Shono, F. (2010) Human blood concentrations of cotinine, a biomonitoring marker for tobacco smoke, extrapolated from nicotine metabolism in rats and humans and physiologically based pharmacokinetic modeling. Int. J. Environ. Res. Public Health, 7, 3406-3421. https://doi.org/10.3390/ijerph7093406
- Yamazaki, H., Takano, R., Horiuchi, K., Shimizu, M., Murayama, N., Kitajima, M. and Shono, F. (2010) Human blood concentrations of dichlorodiphenyltrichloroethane (DDT) extrapolated from metabolism in rats and humans and physiologically based pharmacokinetic modeling. J. Health Sci., 56, 566-575. https://doi.org/10.1248/jhs.56.566
- Emoto, C., Murayama, N., Rostami-Hodjegan, A. and Yamazaki, H. (2009) Utilization of estimated physicochemical properties as an integrated part of predicting hepatic clearance in the early drug-discovery stage: Impact of plasma and microsomal binding. Xenobiotica, 39, 227-235. https://doi.org/10.1080/00498250802668863
- Poulin, P. and Theil, F.P. (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci., 91, 129-156. https://doi.org/10.1002/jps.10005
- Kato, M., Shitara, Y., Sato, H., Yoshisue, K., Hirano, M., Ikeda, T. and Sugiyama, Y. (2008) The quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modeling. Pharm. Res., 25, 1891-1901. https://doi.org/10.1007/s11095-008-9607-2
- Yamazaki, H. (2017) Differences in toxicological and pharmacological responses mediated by polymorphic cytochromes P450 and related drug-metabolizing enzymes. Chem. Res. Toxicol., 30, 53-60. https://doi.org/10.1021/acs.chemrestox.6b00286
- Shimada, T. (2017) Inhibition of carcinogen-activating cytochrome P450 enzymes by xenobiotic chemicals in relation to antimutagenicity and anticarcinogenicity. Toxicol. Res. 33, 79-96. https://doi.org/10.5487/TR.2017.33.2.079
- Nohmi, T. (2018) Thresholds of genotoxic and non-genotoxic carcinogens. Toxicol. Res., 34, 281-90. https://doi.org/10.5487/TR.2018.34.4.281