DOI QR코드

DOI QR Code

Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction

Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산

  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Received : 2020.02.13
  • Accepted : 2020.03.16
  • Published : 2020.05.01

Abstract

Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 ℃, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 ℃, 0.6 M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.

홍조류인 Eucheuma spinosum은 카라기난을 주된 다당으로 함유하고 있으며 Indonesia, Malaysia, Philippines, China, Tanzania 등지에서 상업적으로 생산되고 있다. 본 연구에서는 E. spinosum을 대상으로 FeCl3-촉매 수열반응을 통하여 당과화학중간체(5-HMF, levulinic acid, formic acid)로전환하고자하였다. 통계적실험법(3-수준-3-인자의 Box-Behnken design)을 적용하여 반응인자(반응온도, 촉매농도, 반응시간)의 최적화와 영향을 평가하였다. 최적화 결과, 5-HMF의 농도는 160 ℃, 0.4 M FeCl3, 10 min에서 2.96 g/L가 생성되었다. Levulinic acid와 formic acid의 최적 조건은 200 ℃, 0.6 M FeCl3, 30 min으로 결정되었고, 농도는 각각 4.26 g/L와 3.77 g/L이었다.

Keywords

References

  1. Demibras, A., "Progress and Recent Trends in Biofuels," Prog. Energ. Combust. Sci., 33, 1-18(2007). https://doi.org/10.1016/j.pecs.2006.06.001
  2. Kamm, B., Gruber, P. R. and Kamm, M., Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2006).
  3. Putten, R. J., Waal, J. C., Jong, E., Rasrendra, C. B., Heeres, H. J. and Vries, J. G., "Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources," Chem. Rev., 113(3), 1499-1497(2013). https://doi.org/10.1021/cr300182k
  4. Chheda, J. N., Roman-Leshkov, Y. and Dumesic, J. A., "Production of 5-hydroxymethylfurfural and Furfural by Dehydration of Biomass-derived Mono- and Polysaccharides," Green Chem., 9, 342-350(2007). https://doi.org/10.1039/B611568C
  5. Kim, Y. W. and Shin, H. J., "Introduction of Alkali Soaking and Microwave Drying Processes to Improve Agar Quality of Gracilaria verrucosa," Korean J. Chem. Eng., 34(12), 3163-3169(2017). https://doi.org/10.1007/s11814-017-0220-0
  6. Siripong, P., Doungporn, P., Yoo, H. Y. and Kim, S. W., "Improvement of Sugar Recovery from Sida acuta (Thailand Weed) by NaOH Pretreatment and Application to Bioethanol Production," Korean J. Chem. Eng., 35(12), 2413-2420(2018). https://doi.org/10.1007/s11814-018-0170-1
  7. Jeong, G. T. and Park, D. H., "Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansii," Appl. Biochem. Biotech., 161, 41-52(2010). https://doi.org/10.1007/s12010-009-8795-5
  8. Jeong, G. T. and Park, D. H., "Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-hydrolysis and Response Surface Methodology," KSBB Journal, 26, 341-346(2011). https://doi.org/10.7841/ksbbj.2011.26.4.341
  9. Jeong, G. T., Kim, S. K. and Park, D. H., "Application of Solid-acid Catalyst and Marine Macro-algae Gracilaria verrucosa to Production of Fermentable Sugars," Bioresour. Technol., 181, 1-6(2015). https://doi.org/10.1016/j.biortech.2015.01.038
  10. Park, M. R., Kim, S. K. and Jeong, G. T., "Optimization of the Levulinic Acid Production from the Red Macroalga, Gracilaria verrucosa Using Methanesulfonic Acid," Algal Res., 31, 116-121 (2018). https://doi.org/10.1016/j.algal.2018.02.004
  11. Lee, S. B., Kim, S. K., Hong, Y. K. and Jeong, G. T., "Optimization of the Production of Platform Chemicals and Sugars from the Red Macroalga, Kappaphycus alvarezii," Algal Res., 13, 303-310(2016). https://doi.org/10.1016/j.algal.2015.12.013
  12. Kim, D. H., Lee, S. B., Kim, S. K., Park, D. H. and Jeong, G. T., "Optimization and Evaluation of Sugars and Chemicals Production from Green Macro-algae Enteromorpha intestinalis," Bioenerg. Res., 9, 1155-1166(2016). https://doi.org/10.1007/s12155-016-9759-6
  13. Ra, C. H., Jung, J. H., Sunwoo, I. Y., Kang, C. H., Jeong, G. T. and Kim, S. K., "Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-tolerant Yeast Candida tropicalis," J. Microbiol. Biotechnol., 25, 856-862(2015). https://doi.org/10.4014/jmb.1409.09038
  14. Kim, M. J., Kim, J. S., Ra, C. H. and Kim, S. K., "Bioethanol Production from Eucheuma spinosum Using Various Yeasts," KSBB Journal, 28(5), 315-318(2013). https://doi.org/10.7841/ksbbj.2013.28.5.315
  15. Zhang, H., Ye, G., Wei, Y., Li, X., Zhang, A. and Xie, J., "Enhanced Enzymatic Hydrolysis of Sugarcane Bagasse with Ferric Chloride Pretreatment and Surfactant," Bioresour. Technol., 229, 96-103(2017). https://doi.org/10.1016/j.biortech.2017.01.013
  16. Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R. and Lu, X., "Kinetic Study of Levulinic Acid Production from Corn Stalk at Mild Temperature Using $FeCl_3$ as Catalyst," Fuel, 187, 261-267(2017). https://doi.org/10.1016/j.fuel.2016.09.019
  17. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/bridge(2004).
  18. Kim, H. S. and Jeong, G. T., "Valorization of Galactose Into Levulinic Acid via Acid Catalysis," Korean J. Chem. Eng., 35, 2232-2240 (2018). https://doi.org/10.1007/s11814-018-0126-5
  19. Kim, H. S., Park, M. R., Kim, S. K. and Jeong, G. T., "Valorization of Chitosan into Levulinic Acid by Hydrothermal Catalytic Conversion with Methanesulfonic Acid," Korean J. Chem. Eng., 35, 1290-1296(2018). https://doi.org/10.1007/s11814-018-0035-7
  20. Chemical Economics Handbook, 2016. Formic acid. https://www.ihs.com/products/formic-acid-chemical-economics-handbook.html. (Accessed 07 Feb. 2020).
  21. Zhou, D., Hou, Q., Liu, W. and Ren, X., "Rapid Determination of Formic and Acetic Acids in Biomass Hydrolysate by Headspace Gas Chromatography," J. Ind. Eng. Chem., 47, 281-287(2017). https://doi.org/10.1016/j.jiec.2016.11.044
  22. Joo, F., "Breakthroughs in Hydrogen Storage-Formic Acid as a Sustainable Storage Material for Hydrogen," ChemSusChem, 1(10), 805-808(2008). https://doi.org/10.1002/cssc.200800133
  23. Banerji, A., Balakrishnan, M. and Kishore, V. V. N., "Low Severity Dilute-acid Hydrolysis of Sweet Sorghum Bagasse," Appl. Energ., 104, 197-206(2013). https://doi.org/10.1016/j.apenergy.2012.11.012
  24. Estrada-Martinez, R., Favela-Torres, E., Soto-Cruz, N. O., Escalona-Buendia, H. B. and Saucedo-Castaneda, G., "A Mild Thermal Pre-treatment of the Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-state Fermentation," Biotechnol. Bioproc. E., 24(2), 401-412(2019). https://doi.org/10.1007/s12257-019-0032-7
  25. Park, M. R., Kim, S. K. and Jeong, G. T., "Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis," Biotechnol. Bioproc. E., 23(3), 302-310(2018). https://doi.org/10.1007/s12257-018-0090-2
  26. Jeong, G. T., "Production of Total Reducing Sugar and Levulinic Acid from Brown Macro-algae Sargassum fulvellum," Korean J. Microbiol. Biotechnol., 42(2), 177-183(2014). https://doi.org/10.4014/kjmb.1404.04005