• Title/Summary/Keyword: Plastic Work

Search Result 725, Processing Time 0.024 seconds

A Study of Localization with Al7075 By Using Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 알루미늄 7075합금강의 국부화 현상에 대한 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.9-12
    • /
    • 2000
  • The importance of the role of plastic spin in the rate-dependent response of materials at large deformations is the main objective of this work. After a brief presentation of a general consitutive framework for visco-rigid plasticity at large strains an isotropic/kinematic hardening and a visco-rigid plastic model are used to analyze the stress-strain response under simple shear. A clear understanding of the role of plastic spin is achieved by obtaining numerical analyzed results for different stress values in which the plastic spin consititutive parameters interrelaste with the strain rate and other more conventional model constants, Especially this paper is concerned with introducing behaviors of Al7075

  • PDF

Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis (강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구)

  • 이진희;강범수;김병민
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF

Effect of Strain Rate on Plastic Deformation Behavior of Y-CSZ Single Crystal

  • Cheong, Deock-Soo;Kim, Chang-Sam
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures by activating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasing strain rate from $\varepsilon=1.04\times10^{-5} sec^{-1}$ to $2.08\times10^{-5} sec^{-1}$ the yield drop was suppressed and resulted in higher Young's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using a transmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plastic deformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However, dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in the sample with higher strain rate, which may cause the higher work hardening.

A study on the restoring method of the abrasives cylinder liner of cast iron using thermal plastic deformation technique (TPD법에 의해 재생된 실린더 라이너의 야금학적 고찰)

  • 이광렬;김종호;김영식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.141-146
    • /
    • 2002
  • The cast iron cylinder liner of the marine engine must be scrapped after its inner surface was definitely worn out due to the friction between the surface and piston ring during the operating. In this research, the restoring method of the worn out cast iron cylinder liner are discussed based on the results of experimental work of the thermal plastic deformation technique.

  • PDF

Elasto-Plastic Postbuckling Analysis of Space Truss Structures (공간트러스구조의 탄소성 후좌굴 해석)

  • Lee, Sang-Hwan;Kwun, Ik-No;Kim, Eung-Kyo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.37-42
    • /
    • 2004
  • The primary objective of this paper is to trace the post-buckling behavior of space trusses in the inelastic range. Modeled member material behavior characteristics of struts in the post-critical elasto-plastic stage are determined and three types of idealized hardening rules are described. To perform this analysis, the present work is used the current stiffness parameter method combined with the cylinderical arc-length method. Numerical examples are presented to illustrate the accuracy and the application of the numerical solutions introduced above.

  • PDF

Factors to Influence Thermal-Cycling Reliability of Passivation Layers in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 박막의 TC 신뢰성에 영향을 미치는 요인들)

  • Lee, Seong-Min;Lee, Seong-Ran
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.288-292
    • /
    • 2009
  • This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.

Effective moment of inertia for rectangular elastoplastic beams

  • Faller, Ronald K.;Rosson, Barry T.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.95-110
    • /
    • 1999
  • An effective moment of inertia is developed for a rectangular, prismatic elastoplastic beam with elastic, linear-hardening material behavior. The particular solution for a beam with elastic, perfectly plastic material behavior is also presented with applications for beam bending in closed-form. Equations are presented for the direct application of the virtual work method for elastoplastic beams with concentrated and distributed loads. Comparisons are made between the virtual work method deflections and the deflections obtained by using an average effective moment of inertia over two lengths of the beam in the elastoplastic region.

Evaluation of Mechanical Properties of AZ31B for Sheet Metal Forming at Warm and High Temperature (온간, 열간 판재 성형을 위한 AZ31B의 기계적 성질 평가)

  • Choo D. K.;Kim W. Y.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.256-259
    • /
    • 2004
  • In the present study, AZ31B sheets has a bad formability in room temperature, but the formability is improved significantly as increasing the temperature because of rolled magnesium alloy sheet has a hexagonal closed packed structure (HCP) and a plastic anisotropy. In this paper, after tensile test in various temperatures, strain rate, show the tensile mechanical properties, yield and ultimate strength, K-value, work hardening exponent(n), strain rate sensitivity(m). As temperature increased, yield, ultimate strength and K-value, work hardening exponent(n) are decreased but strain rate sensitivity(m) is increased. As cross-head-speed increased, yield, ultimate strength and K-value, work hardening exponent(n) are increased. And according to the temperature, how change the plastic anisotropy factor R. In addition, we observed how temperatures and cross-head-speed effect on microstructure.

  • PDF

Non-steady Ideal Forming in Plane Strain (평면 변형 하에서의 비정상 이상 공정 이론)

  • ;;Owen Richmond
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.66-69
    • /
    • 2002
  • In the ideal forming theory(1), which has been deviously developed as a direct method for optimizing forming process, material elements are required to deform following the minimum plastic work path (or the proportional true strain path). Besides the general theory(2,3), specific ideal forming theories have been developed for membrane sheet forming(4) as well as two-dimensional steady bulk forming(5-7). In this work, the ideal forming theory was successfully applied for non-steady bulk forming under the plane strain condition. Here, the shape change complying with the minimum plastic work path, was effectively described by developing a numerical code based on the characteristic method. Numerical results obtained for a specific industrial part also include the optimum pre-forming shape and its evolving shape change to the final shape as well as the boundary traction history.

  • PDF

Two-Step Incision for Periarterial Sympathectomy of the Hand

  • Jeon, Seung Bae;Ahn, Hee Chang;Ahn, Yong Su;Choi, Matthew Seung Suk
    • Archives of Plastic Surgery
    • /
    • v.42 no.6
    • /
    • pp.761-768
    • /
    • 2015
  • Background Surgical scars on the palmar surface of the hand may lead to functional and also aesthetic and psychological consequences. The objective of this study was to introduce a new incision technique for periarterial sympathectomy of the hand and to compare the results of the new two-step incision technique with those of a Koman incision by using an objective questionnaire. Methods A total of 40 patients (17 men and 23 women) with intractable Raynaud's disease or syndrome underwent surgery in our hospital, conducted by a single surgeon, between January 2008 and January 2013. Patients who had undergone extended sympathectomy or vessel graft were excluded. Clinical evaluation of postoperative scars was performed in both groups one year after surgery using the patient and observer scar assessment scale (POSAS) and the Wake Forest University rating scale. Results The total patient score was 8.59 (range, 6-15) in the two-step incision group and 9.62 (range, 7-18) in the Koman incision group. A significant difference was found between the groups in the total PS score (P-value=0.034) but not in the total observer score. Our analysis found no significant difference in preoperative and postoperative Wake Forest University rating scale scores between the two-step and Koman incision groups. The time required for recovery prior to returning to work after surgery was shorter in the two-step incision group, with a mean of 29.48 days in the two-step incision group and 34.15 days in the Koman incision group (P=0.03). Conclusions Compared to the Koman incision, the new two-step incision technique provides better aesthetic results, similar symptom improvement, and a reduction in the recovery time required before returning to work. Furthermore, this incision allows the surgeon to access a wide surgical field and a sufficient exposure of anatomical structures.