• Title/Summary/Keyword: Plastic Extrusion Technique

Search Result 27, Processing Time 0.024 seconds

An Experimental Study in the Forward-Backward Extrusion for the Cup-Cup shape (상하 컵형인 전후방압출공정에 관한 실험적 연구)

  • 김영득;한철호
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • In the simultaneous forward-backward extrusion the effects of some process variables including area reduction, stroke advance, materials(Al 2024 and commercial pure copper) on the extrusion load, plastic flow and height ratio of upper to lower extruded parts are experimentally investigated and analyzed. Grid-marking technique is employed to visualize the plastic flow. The influence of using split and original specimen on the extrusion load and height ratio is evaluated by experiments. Experimental results show that the plastic flow if oriented to the part of lower area reduction in the begining but it is usually variated during the overall process. The configurations of plastic deformation and plastic flow are dependent on the working materials and the lubricational conditions.

  • PDF

An Experimental Study for the CUP-CUP Axisymmetric Combined Extrusion (컵-컵형 축대칭 복합압출에 관한 실험적연구)

  • 김영득;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.175-182
    • /
    • 1994
  • Effect of some process variables including area reduction, stroke advance, materials on the extrusion load, plastic flow and height ratio of upper to lower extruded parts in the cup-cup axisymmetric extrusion were experimentally investigated and analyzed. Deformed pattern is visualized by grid-marking technique using half-cut billets splitted. The influence of using split specimen and original specimen on the extrusion load and height ratio is examined by experiment.

  • PDF

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

An Inspection System for Multilayer Co-Extrusion Blown Plastic Film Line (공압출 다층 플라스틱 필름 라인을 위한 결함 검사 시스템)

  • Hahn, Jong Woo;Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.45-51
    • /
    • 2012
  • Multilayer co-extrusion blown film construction is a popular technique for producing plastic films for various packaging industries. Automated detection of defective films can improve the quality of film production process. In this paper, we propose a film inspection system that can detect and classify film defects robustly. In our system, first, film images are acquired through a high speed line-scan camera under an appropriate lighting system. In order to detect and classify film defects, an inspection algorithm is developed. The algorithm divides the typical film defects into two groups: intensity-based and texture-based. Intensity-based defects are classified based on geometric features. Whereas, to classify texture-based defects, a texture analysis technique based on local binary pattern (LBP) is adopted. Experimental results revealed that our film inspection system is effective in detecting and classifying defects for the multilayer co-extrusion blown film construction line.

A Simplified Three-Dimensional Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 근사 3차원 유한 요소 해석)

  • Shin, H.W.;Kim, D.W.;Kim, N.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.52-65
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition is combined with the slab method. To define the die geometry for a non-axisymmetric extrusion. area mapping technique was used. Streamlined die surface was used to minimize the total extrusion pressure. Extrusion of square, hexagonal and 'T' section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

An Experimental Study Using Plasticine for the Hot Extrusion Processes of Regular Square Sections throuth Square Dies (플라스티신을 이용한 정사각형재의 열간 평금형 압출공정에 관한 실험적 연구)

  • 변삼수;한철호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.187-191
    • /
    • 1995
  • An experimental study to analyze thd hot extrusion processes of regular square section through square dies is carried out by using plasticine as a model material at room temperature. The experimental setup for the extrusion of squared section from round billets through square dies is designed and manufactured. In order to visullize the plastic flow in the extrusion process the technique of gridding on the planes of the sysmmetries and a stacking the desks with different colors are employed. Velocity fields on the symmetry planes are obtained by using grid distortion.

  • PDF

Analysis of three-dimensional plastic flow for extrusion of elliptic sections through continuous dies (곡면금형을 통한 타원형 형재의 압출에 대한 3차원 소성유동해석)

  • 한철호;양동렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.110-117
    • /
    • 1987
  • A new kinematically admissible velocity field for a generalized three-dimensional flow is introduced, in which the flow is bounded by an analytic die-profile function. Then, by applying the upper-bound method th the velocity field, the flow patterns as the upper-bound method are obtained. Extrusion of elliptic sections from round billets is chosen as a computational example. Computation and experiments are carried out for work-hardening material such as aluminum alloy 2024. In order to visualize the plastic flow, the grid marking technique is employed. The theoretical predictions both in extrusion load and deformed pattern are in good agreement with the experimental data.

Establishment of Bending Analysis Technique on the Extrusion of Aluminum Alloy (알루미늄형재 압출에 대한 굽힘 해석기법 개발)

  • 양순종;최한호;강범수;이상록
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.152-159
    • /
    • 1998
  • Two angle-shaped extrusions have been studied in order to analyze the bending effect of the extruded product using the three-dimensional rigid-plastic finite element method. The velocity distribution at the outlet becomes the source for the construction of the bending configuration of the final product. in which an analytic scheme has been developed for the description of the bending. A systematic approach presented here appears to have sound agreement with the experimental result, and has been applied to a large extrusion of aluminum alloy.

  • PDF

Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 유한 요소 해석)

  • 신현우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.27-46
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition, is combined with the slab method. To define the die geometry for non-axisymmetric extrusion, area mapping technique was used. Streamlined die surface was used to miniminze the total extrusion pressure. Extrusion of square, hexagonal and "T" section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

Upper eyelid platinum weight placement for the treatment of paralytic lagophthalmos: A new plane between the inner septum and the levator aponeurosis

  • Oh, Tae Suk;Min, Kyunghyun;Song, Sin Young;Choi, Jong Woo;Koh, Kyung Suk
    • Archives of Plastic Surgery
    • /
    • v.45 no.3
    • /
    • pp.222-228
    • /
    • 2018
  • Background The most common surgical treatment for paralytic lagophthalmos is the placement of a weight implant in the upper eyelid; however, this technique confers the risks of implant visibility, implant extrusion, and entropion. In this study, we present a new technique of placing platinum weight implants between the levator aponeurosis and inner septum to decrease such complications. Methods A total of 37 patients with paralytic lagophthalmos were treated between March 2014 and January 2017 with platinum weight placement (mean follow-up, 520.1 days). After dissecting through the orbicularis oculi muscle, the tarsal plate and levator aponeurosis were exposed. The platinum weights (1.0-1.4 g) were fixed to the upper margin of the tarsal plate and placed underneath the orbital septum. Results Five patients could partially close their eye after surgery. The average distance between the upper eyelid and the lower eyelid when the eyes were closed was 1.12 mm. The rest of the patients were able to close their eye completely. Three patients patient developed allergic conjunctivitis after platinum weight insertion, which was managed with medication. None of the patients complained of discomfort in the upper eyelid after surgery. Visibility or extrusion of the implant were observed in three patients. Conclusions Postseptal weight placement is a safe and reproducible method in both primary and secondary upper eyelid surgery for patients with paralytic lagophthalmos. It is a feasible method for preventing implant visibility, implant exposure, and entropion. Moreover, platinum is a better implant material than gold because of its smaller size and greater thinness.