• 제목/요약/키워드: Plasmodium berghei

검색결과 19건 처리시간 0.021초

Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner

  • Park, Mi-Kyung;Ko, Eun-Ji;Jeon, Kyung-Yoon;Kim, Hyunsu;Jo, Jin-Ok;Baek, Kyung-Wan;Kang, Yun-Jeong;Choi, Yung Hyun;Hong, Yeonchul;Ock, Mee Sun;Cha, Hee-Jae
    • Parasites, Hosts and Diseases
    • /
    • 제57권2호
    • /
    • pp.117-125
    • /
    • 2019
  • Malarial infection induces tissue hypoxia in the host through destruction of red blood cells. Tissue hypoxia in malarial infection may increase the activity of $HIF1{\alpha}$ through an intracellular oxygen-sensing pathway. Activation of $HIF1{\alpha}$ may also induce vascular endothelial growth factor (VEGF) to trigger angiogenesis. To investigate whether malarial infection actually generates hypoxia-induced angiogenesis, we analyzed severity of hypoxia, the expression of hypoxia-related angiogenic factors, and numbers of blood vessels in various tissues infected with Plasmodium berghei. Infection in mice was performed by intraperitoneal injection of $2{\times}10^6$ parasitized red blood cells. After infection, we studied parasitemia and survival. We analyzed hypoxia, numbers of blood vessels, and expression of hypoxia-related angiogenic factors including VEGF and $HIF1{\alpha}$. We used Western blot, immunofluorescence, and immunohistochemistry to analyze various tissues from Plasmodium berghei-infected mice. In malaria-infected mice, parasitemia was increased over the duration of infection and directly associated with mortality rate. Expression of VEGF and $HIF1{\alpha}$ increased with the parasitemia in various tissues. Additionally, numbers of blood vessels significantly increased in each tissue type of the malaria-infected group compared to the uninfected control group. These results suggest that malarial infection in mice activates hypoxiainduced angiogenesis by stimulation of $HIF1{\alpha}$ and VEGF in various tissues.

Antimalarial Effects of Areca catechu L.

  • Jiang, Jing-Hua;Jung, Suk-Yul;Kim, Youn-Chul;Shin, Sae-Ron;Yu, Seung-Taek;Park, Hyun
    • 동의생리병리학회지
    • /
    • 제23권2호
    • /
    • pp.494-498
    • /
    • 2009
  • The emergence and spread of drug-resistant malaria parasites is a serious public health problem in the tropical world. Useful antimalarial drugs such as chloroquine have resistance in the world now. Moreover, other antimalarialdrugs such as mefloquine, halofantrine, atovaquone, proguanil, artemether and lumefantrine retain efficacy but have limitations, one of which is their high cost. New antimalarial drugs are clearly needed now. Cytotoxicity assay and susceptibility assay were performed for the selectivity of herb extracts in vitro. On the basis of high selectivity, 4-day suppressive test and survival test were progressed in Plasmodium berghei-infected mice. The selectivity of Areca catechu L. (ACL) and butanol extract of ACL (ACL-BuOH extract) were 3.4 and 3.0 in vitro, respectively. Moreover in vivo, 4-day suppressive test showed 39.1 % inhibition effect after treated with 150 mg/kg/day ACL-BuOH to P. berghei-infected mice. Survival test also showed 60% survival rate with ACL-BuOH-treated group while all other group mice died. In this study, ACL and ACL-BuOH were investigated for antimalarial activity in vitro and in vivo and they showed a potent antimalarial activity. In particular,ACL-BuOH could specifically lead higher survival rate of mice in vivo. Therefore ACL-BuOH would be a candidate of antimalarial drugs.

Total Synthesis of New Apicidin Derivatives as Potent Antitumor Agents

  • kim, hyung-Kyo;Jin, Cheng-Hua;Han, Jeong-Whan;Lee, Hyang-Woo;Lee, Yin-Won;Zee, Ok-Pyo;Jung, Young-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.188.1-188.1
    • /
    • 2003
  • The antiparasitic agent apicidin, which was recently isolated from cultures of Fusarium Pallidoroseum, belongs to a rare group of cyclictetrapeptide fungal metabolites. Apicidin inhibits protozoal HDAC and is orally active against Plasmodium berghei malaria in mice. The biological activity of apicidin appears to be attributable to inhibition of apicomplexan HDAC at low nanomolar concentrations. In the present, we have worked about the synthesis of new apicidin derivatives and discovered that apicidin and some derivatives have mild antitumor activity. (omiited)

  • PDF

Low Fetal Weight is Directly Caused by Sequestration of Parasites and Indirectly by IL-17 and IL-10 Imbalance in the Placenta of Pregnant Mice with Malaria

  • Fitri, Loeki Enggar;Sardjono, Teguh Wahju;Rahmah, Zainabur;Siswanto, Budi;Handono, Kusworini;Dachlan, Yoes Prijatna
    • Parasites, Hosts and Diseases
    • /
    • 제53권2호
    • /
    • pp.189-196
    • /
    • 2015
  • The sequestration of infected erythrocytes in the placenta can activate the syncytiotrophoblast to release cytokines that affect the micro-environment and influence the delivery of nutrients and oxygen to fetus. The high level of IL-10 has been reported in the intervillous space and could prevent the pathological effects. There is still no data of Th17 involvement in the pathogenesis of placental malaria. This study was conducted to reveal the influence of placental IL-17 and IL-10 levels on fetal weights in malaria placenta. Seventeen pregnant BALB/C mice were divided into control (8 pregnant mice) and treatment group (9 pregnant mice infected by Plasmodium berghei). Placental specimens stained with hematoxylin and eosin were examined to determine the level of cytoadherence by counting the infected erythrocytes in the intervillous space of placenta. Levels of IL-17 and IL-10 in the placenta were measured using ELISA. All fetuses were weighed by analytical balance. Statistical analysis using Structural Equation Modeling showed that cytoadherence caused an increased level of placental IL-17 and a decreased level of placental IL-10. Cytoadherence also caused low fetal weight. The increased level of placental IL-17 caused low fetal weight, and interestingly low fetal weight was caused by a decrease of placental IL-10. It can be concluded that low fetal weight in placental malaria is directly caused by sequestration of the parasites and indirectly by the local imbalance of IL-17 and IL-10 levels.

Antimalarial effect of synthetic endoperoxide on synchronized Plasmodium chabaudi infected mice

  • Nagwa S. M. Aly;Hiroaki Matsumori;Thi Quyen Dinh;Akira Sato;Shin-Ichi Miyoshi;Kyung-Soo Chang;Hak Sun Yu;Fumie Kobayashi;Hye-Sook Kim
    • Parasites, Hosts and Diseases
    • /
    • 제61권1호
    • /
    • pp.33-41
    • /
    • 2023
  • The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects.

Augmentation of antioxidant system: Contribution to antimalarial activity of Clerodendrum violaceum leaf extract

  • Balogun, Elizabeth Abidemi;Zailani, Ahmed Hauwa;Adebayo, Joseph Oluwatope
    • 셀메드
    • /
    • 제4권4호
    • /
    • pp.26.1-26.9
    • /
    • 2014
  • Reactive oxygen species are known to mediate various pathological conditions associated with malaria. In this study, the antioxidant potential of Clerodendrum violaceum leaf extracts, an indigenous antimalarial remedy, was evaluated. Total phenol, flavonoid, selenium, vitamins C and E contents of Clerodendrum violaceum leaf extracts were determined. The free radical scavenging activities of the extracts against DPPH, superoxide anion and hydrogen peroxide coupled with their reducing power were also evaluated in vitro. Moreover, responses of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in a rodent malaria model to a 4-day administration of Clerodendrum violaceum leaf extracts were also evaluated. The methanolic extract was found to contain the highest amounts of antioxidant compounds/element and also demonstrated the highest free radical scavenging activity in vitro. The results showed a significant decrease (p < 0.05) in SOD and CAT activities with a concurrent significant (p < 0.05) increase in GPx and GR activities in both erythrocytes and liver of untreated Plasmodium berghei NK65-infected animals compared to the uninfected animals. The extracts were able to significantly increase (p < 0.05) SOD and CAT activities and significantly reduce (p < 0.05) GPx and GR activities in both the liver and erythrocytes compared to those observed in the untreated infected animals. The results suggest the augmentation of the antioxidant system as one of the possible mechanisms by which Clerodendrum violaceum extract ameliorates secondary effects of malaria infection, alongside its antiplasmodial effect in subjects.

개똥쑥에서 분리(分離)된 artemisinin이 가토(家兎) IgG에 의해 유발(誘發)된 생쥐의 현독성(賢毒性) 혈청사구체현염(血淸絲球體賢炎)에 미치는 영향(影響) (The effect of artemisinin on the rabbit IgG accelerated nephrotoxic serum glomerulonephritis in mice)

  • 주전
    • 혜화의학회지
    • /
    • 제4권2호
    • /
    • pp.335-336
    • /
    • 1996
  • Artemisinin, a new antimalarial to treat patients infected with strains of Plasmodium jalciparum, derived from the plant Artemisia annua Linn, has immunopharmacologic actions such as enhence the PHA -induced lymphocyte transformation rate, increased the weight of spleen but reduced the weight of thymus, reduced phagocytic function of peritoneal macrophage, remarkably reduced the level of serum IgG and hemolysin fonning capacity (sentitized with SRBC), inhibited the activity of Ts cells of donor mice by supraoptimal immunuization(SOI), but enhenced activity of Ts cells of recipient mice by SOI. These results suggested that Ts cells may be the target cells of artemisinin. To the serum complement C3 level of plasmodium berghei-infeted mice, artemisinin (i. m,) could remarkly increase it. The artemisinin also obviously reduced the prostaglandin E(PGE) in the mouse hind paw swelling induced by carrageenin. Numerous studies have demonstrated that pharmacologic doses of PGE attenuate the development of immunocomplex nephritis. Some autologous immune mechanisms may be invoolved In the pathogensis of some types of glomurulonephritis. Glomerular abnormalities can be induced in animals by variety of immunological manipulations. The resulting disorder has many clinical and pathogical similarities to the disease in human. Our purpose was therefore to test the ability of the artemisinin to lessen the severity of rabbit IgG accelerated nephrotoxic serum glomerulonephritis in mice model. Mice which had treated with rabbit IgG and NTS, administrated with saline, showed Significant inceases of urinary protein, cholesterol level, and decrease of serum albumin in NS group. On the contrary, By i.g. adminstration of artemisinin at dose of 12.5, 25 and 50 mg/kg for 14 days after NTS injection, shown that artemisinin inhibited the nephritic changes in some parameters by means of urinary protein(p<0.05, p<0.01) and serum choleterol(p<0.05, p<0.01) and albumin (p<0.05, p<0.01), blood urea nitrogen (p<0.05, p<0.01), serum albumin(p<0.05, p<0.01); Cyclophosphamide(i.p. 10mg/kg for 14d) had almost same effect as the artemisinin had. Morphological studies shown that The picture of kidney from the mouse with NTS-nephritis accerated with rabbit IgG, treated with i.g. saline as the control, the mesangiocapillary were enlarged and proliferated; There were inflammatory cells infiltrating around the glomeruli; The ethelial cell were proliferated in the wall of Bowman's capsule. Histopatholological picture of kidney from the NTS-nephritis accerated with rabbit IgG mouse treated with i.p. 10mg/kg cyclophosphamide as the positive control. No siginicant histopathological evidence were found. Treaded with i.p. 12.5mg/kg artemisinine, the picture shown that mesangiocapillary were lightly proliferated; There were inflammatory cells infiltrating around the glomeruli; Treaded with i.p. 25mg/kg artemisinine, The picture shown that the mesangiocapillary were lightly proliferated; Treaded with i.p. 50mg/kg artemisinine, The picture shown that both the mesangiocapillary proliferated and the inflammatory cells infiltrating around the glomeruli are less than treated with saline, 12.5 and 25 mg/kg artemisinine. On the basis of these studies we conclude that the artemisinin can relieve pathological change caused by NTS-nephritis aacerated with rabbit IgG.

  • PDF

Evaluating the activity of N-89 as an oral antimalarial drug

  • Nagwa S. M. Aly;Hiroaki Matsumori;Thi Quyen Dinh;Akira Sato;Shin-ichi Miyoshi;Kyung-Soo Chang;Hak Sun Yu;Takaaki Kubota;Yuji Kurosaki;Duc Tuan Cao;Gehan A. Rashed;Hye-Sook Kim
    • Parasites, Hosts and Diseases
    • /
    • 제61권3호
    • /
    • pp.282-291
    • /
    • 2023
  • Despite the recent progress in public health measures, malaria remains a troublesome disease that needs to be eradicated. It is essential to develop new antimalarial medications that are reliable and secure. This report evaluated the pharmacokinetics and antimalarial activity of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) using the rodent malaria parasite Plasmodium berghei in vivo. After a single oral dose (75 mg /kg) of N-89, its pharmacokinetic parameters were measured, and t1/2 was 0.97 h, Tmax was 0.75 h, and bioavailability was 7.01%. A plasma concentration of 8.1 ng/ml of N-89 was maintained for 8 h but could not be detected at 10 h. The dose inhibiting 50% of parasite growth (ED50) and ED90 values of oral N-89 obtained following a 4-day suppressive test were 20 and 40 mg/kg, respectively. Based on the plasma concentration of N-89, we evaluated the antimalarial activity and cure effects of oral N-89 at a dose of 75 mg/kg 3 times daily for 3 consecutive days in mice harboring more than 0.5% parasitemia. In all the N-89-treated groups, the parasites were eliminated on day 5 post-treatment, and all mice recovered without a parasite recurrence for 30 days. Additionally, administering oral N-89 at a low dose of 50 mg/kg was sufficient to cure mice from day 6 without parasite recurrence. This work was the first to investigate the pharmacokinetic characteristics and antimalarial activity of N-89 as an oral drug. In the future, the following steps should be focused on developing N-89 for malaria treatments; its administration schedule and metabolic pathways should be investigated.