Acknowledgement
This study was partially supported by a grant from the Program of the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID, JP22wm0125004) from the Ministry of Education, Culture, Sports, Science, and Technology in Japan (MEXT), and the Japan Agency for Medical Research and Development (AMED). We thank Taiki Osato (Okayama University) for the partial experiments and discussion.
References
- Hodel EM, Kay K, Hastings IM. 2016. Incorporating stage-specific drug action into pharmacological modeling of antimalarial drug treatment. Antimicrob Agents Chemother 2016;60(5):2747-2756. https://doi.org/10.1128/AAC.01172-15
- Moreno A, Badell E, Van Rooijen N, Druilhe P. Human malaria in immunocompromised mice: new in vivo model for chemotherapy studies. Antimicrob Agents Chemother 2001;45(6):1847-1853. https://doi.org/10.1128/AAC.45.6.1847-1853.2001
- Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov 2004;3(6):509-520. https://doi.org/10.1038 /nrd1416 https://doi.org/10.1038/nrd1416
- Wengelnik K, Vidal V, Ancelin ML, Cathiard AM, Morgat JL, et al. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 2002;295(5558):1311-1314. https://doi.org/10.1126/science.1067236
- Owolabi ATY, Reece SE, Schneider P. Daily rhythms of both host and parasite affect antimalarial drug efficacy. Evol Med Public Health 2021;9(1):208-219. https://doi.org/10.1093/emph/eoab013
- Wilson DW, Langer C, Goodman CD, McFadden GI, Beeson JG. Defining the timing of action of antimalarial drugs against Plasmodium falciparum. Antimicrob Agents Chemother 2013;57(3):1455-1467. https://doi.org/10.1128/AAC.01881-12
- Kim HS, Nagai Y, Ono K, Begum K, Wataya Y, et al. Synthesis and antimalarial activity of novel medium-sized 1,2,4,5-tetraoxacycloalkanes. J Med Chem 2001;44(14):2357-2361. https://doi.org/10.1021/jm 010026g
- Sato A, Hiramoto A, Morita M, Matsumoto M, Komich Y, et al. Antimalarial activity of endoperoxide compound 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol. Parasitol Int 2011;60(3):270-273. https://doi.org/10.1016/j.parint.2011.04.001
- Morita M, Koyama T, Sanai H, Sato A, Hiramoto A. Stage specific activity of synthetic antimalarial endoperoxides, N-89 and N-251, against Plasmodium falciparum. Parasitol Int 2015;64(1):113-117. https://doi.org/10.1016/j.parint.2014.10.007
- Leelaviwat N, Mekraksakit P, Cross KM, Landis DM, McLain M, et al. Melatonin: Translation of ongoing studies into possible therapeutic applications outside sleep disorders. Clin Ther 2022;44(5):783-812. https://doi.org/10.1016/j.clinthera.2022.03.008
- Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, et al. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nature Cell Biol 2000;2(7):466-468. https://doi.org/10.1038/35017112
- Mallaupoma LRC, Dias BKM, Singh MK, Honorio RI, Nakabashi M, et al. Decoding the role of melatonin structure on Plasmodium falciparum human malaria parasites synchronization using 2-sulfenylindoles derivatives. Biomolecules 2022;12(5):638. https://doi.org/10.3390/biom 12050638
- Peters W. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol 1975;69(2):155-171. https://doi.org/10.1080/00034983.1975.11686997
- Smith LM, Motta FC, Chopra G, Moch JK, Nerem RR, et al. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science 2020;368(6492):754-759. https://doi.org/10.1126/science.aba4357
- Beraldo FH, Almeida FM, da Silva AM, Garcia CR. Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle. J Cell Biol 2005;170(4):551-557. https://doi.org/10.1083/jcb.200505117
- Singh MK, Dias BKM, Garcia CRS. Role of melatonin in the synchronization of asexual forms in the parasite Plasmodium falciparum. Biomolecules 2020;10(9):1243. https://doi.org/10.3390/biom10091243
- Gibbs FP, Vriend J. The half-life of melatonin elimination from rat plasma. Endocrinology 1981;109(5):1796-1798. https://doi.org/10.1210/endo-109-5-1796
- Andersen LP, Gogenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig 2016;36(3):169-175. https://doi.org/10.1007/s40261-015-0368-5
- Pereira PHS, Garcia CRS. Melatonin action in Plasmodium infection: Searching for molecules that modulate the asexual cycle as a strategy to impair the parasite cycle. J Pineal Res 2021;70(1):e12700. https://doi.org/10.1111/jpi.12700
- Bagnaresi P, Alves E, Borges da Silva H, Epiphanio S, et al. Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin. Int J Gen Med 2009;2:47-55. https://doi.org/10.2147/ijgm.s3699
- Shuto S, Minakawa N, Niizuma S, Kim HS, Wataya Y, et al. New neplanocin analogs 12. An alternative synthesis of (6'R)-6'-C- methylneplanocin A (RMNPA), a novel potent anti-malarial agent. J Med Chem 2002;45(3):748-751. https://doi.org/10.1021/jm010374i
- Kim HS, Shibata Y, Wataya Y, Tsuchiya K, Masuyama A, et al. Synthesis and antimalarial activity of cyclic peroxides, 1,2,4,5,7-pentoxocanes and 1,2,4,5-tetroxanes. J Med Chem 1999;42(14):2604-2609. https://doi.org/10.1021/jm990014j
- Tsuchiya K, Hamada Y, Masuyama A, Nojima M, McCullough KJ, et al. Synthesis, crystal structure and anti-malarial activity of novel spiro-1,2,4,5-tetraoxacycloalkanes. Tetrahedron Lett 1999;40(21):4077-4080. https://doi.org/10.1016/S0040-4039(99)00653-X
- Miyaoka H, Shimomura M, Kimura H, Yamada Y, Kim HS, et al. Antimalarial activity of kalihinol A and new relative diterpenoids from the okinawan sponge, Acanthella sp. Tetrahedron 1998;54(44):13467-13474. https://doi.org/10.1016/S0040-4020(98)00818-7
- Aly NS, Hiramoto A, Sanai H, Hiraoka O, Hiramoto K, et al. Proteome analysis of new antimalarial endoperoxide against Plasmodium falciparum. Parasitol Res 2007;100(5):1119-1124. https://doi.org/10.1007/s00436-007-0460-8
- Morita M, Sanai H, Hiramoto A, Sato A, Hiraoka O, et al. Plasmodium falciparum endoplasmic reticulum-resident calcium binding protein is a possible target of synthetic antimalarial endoperoxides, N-89 and N-251. J Proteome Res 2012;11(12): 5704-5711. https://doi.org/10.1021/pr3005315