• Title/Summary/Keyword: Plasmid DNA

Search Result 1,000, Processing Time 0.033 seconds

Analysis of Flavonoid 3',5'-Hydroxylase Gene in Transgenic Petunia (Petunia hybrida) Plants (형질 전환된 페튜니아 식물체에서의 Flavonoid 3',5' -Hydroxylase 유전자의 분석)

  • 김영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.323-327
    • /
    • 1998
  • The flavonoid biosynthetic pathway has been studied as a genetic model system, particularly in Petunia hybrida. In order to study the flavonoid biosynthetic pathway, we constructed a fusion gene system between Cauliflower Mosaic Virus (CaMV) 35S promoter and eggplant flavonoid 3', 5'-hydroxylase in pBI 121 plasmid. An optimal condition for plant regeneration was observed when internode explants were cultured on MS medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. For plant transformation internode explants of Petunia hybrida were precultured on BM medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. Putative transgenic plants were selected on medium containing kanamycin 50 mg/L plus cefotaxim 300 mg/L. Putative selected transformants were confirmed by amplification of selectable marker gene (nptII) by polymerase chain reaction (PCR) and Southern hybridization of flavonoid 3',5'-hydroxylase gene.

  • PDF

A One-Step System for Convenient and Flexible Assembly of Transcription Activator-Like Effector Nucleases (TALENs)

  • Zhao, Jinlong;Sun, Wenye;Liang, Jing;Jiang, Jing;Wu, Zhao
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.687-691
    • /
    • 2016
  • Transcription activator-like effector nucleases (TALENs) are powerful tools for targeted genome editing in diverse cell types and organisms. However, the highly identical TALE repeat sequences make it challenging to assemble TALEs using conventional cloning approaches, and multiple repeats in one plasmid are easily catalyzed for homologous recombination in bacteria. Although the methods for TALE assembly are constantly improving, these methods are not convenient because of laborious assembly steps or large module libraries, limiting their broad utility. To overcome the barrier of multiple assembly steps, we report a one-step system for the convenient and flexible assembly of a 180 TALE module library. This study is the first demonstration to ligate 9 mono-/dimer modules and one circular TALEN backbone vector in a one step process, generating 9.5 to 18.5 repeat sequences with an overall assembly rate higher than 50%. This system makes TALEN assembly much simpler than the conventional cloning of two DNA fragments because this strategy combines digestion and ligation into one step using circular vectors and different modules to avoid gel extraction. Therefore, this system provides a convenient tool for the application of TALEN-mediated genome editing in scientific studies and clinical trials.

Analysis of fusogenic activity of autographa californica nuclear polyhedrosis virus (Ac NPV) gp64 envelope glycoprotein

  • Kim, Hee-Jin;Yang, Jai-Myung
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • Teh baculovirus gp64 glycoprotein is a major component of the envelope of budded virus (BV) and has been shown that it plays an essential role in the infection process, especially virus-cell membrane fusion. We have cloned Autographa californica Nuclear Polyhedrosis Virus (AcNPV) gp64 protein were examined for membrane fusion activity by using a synchtium formation assay under various conditions. The optimal conditions required for inducing membrane fusion are 1) form pH 4.0 to 4.8 2) 15 min exposure of cells to acidic pH 3) at least 1 .mu.g of gp64 cloned plasmid DNA per 3 * 10$^{6}$ cells 4) and an exposure of cells to acidic pH at 72 h post-transfection. In order to investigate the role of hydrophobicity of the gp64 glycoprotein for the membrane fusion, the two leucine residues (amino acid position at 229 and 230) within hydrophobic region I were substituted to alanine by PCR-derived site-directed mutagenisis and the membrane fusion activity of the mutant was anlaysed. The gp64 glycoprotein carrying double alamine substitution mutation showed no significant difference in fusion activity. This result suggested that minor changes in hydrophobicity at the amino acid position 229 and 230 does not affect the acid-induced membrane fusion activity of the gp64 glycoprotein.

  • PDF

Antioxidant and Antiproliferative Activities of Methanolic Extract from Celandine

  • Hu, Weicheng;Wang, Myeong-Hyeon
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.207-212
    • /
    • 2009
  • Celandine (Chelidonium majus, family Papaveraceae) is an herb used extensively in traditional Korean medicine. To investigate its antioxidant and antiproliferative activities, the methanolic extract of celandine was introduced. The antioxidant properties of the extract were tested using various in vitro systems, including hydroxyl radical scavenging assay, DNA damage protection assay, 1,1-diphenyll-2-2-pricylhydrazyl (DPPH) free radical scavenging activity, metal chelating activity, and reducing power assay. The extract exhibited stronger antioxidant activity ($IC_{50}=7.92{\mu}g/mL$) against hydroxyl radicals in the Fenton system than butylated hydroxyanisole ($IC_{50}=51.46{\mu}g/mL$) and $\alpha$-tocopherol ($IC_{50}=67.48{\mu}g/mL$). Likewise, damage to the plasmid pBR 322 induced by hydroxyl radicals was found to be protected by the extract at a concentration of $400{\mu}g/mL$. Cellular proliferation and the induction of apoptosis were also examined by a cellular proliferation assay, flow cytometry, and mRNA expression analysis. Taken together, the extract significantly inhibited the growth of HT-29 cells in a concentration- and time-dependent manner, and gradually increased both the proportion of apoptotic cells and the expression of caspase-3. Overall, our research suggests that celandine possesses antioxidant and antiproliferative properties.

Nonionic Amphiphilic Surfactant Conjuncted Polyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier

  • Yin, Dongfeng;Chu, Cang;Ding, Xueying;Gao, Jing;Zou, Hao;Gao, Shen
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • In order to enhance the gene delivery efficiency and decrease the cytotoxicity of polyplexes, we synthesized Solutol-g-PEI by conjugating polyethyleneimine (PEI) to Solutol (polyoxyethylene (10) stearate), and evaluated its efficiency as a possible nonviral gene carrier candidate. Structural analysis of synthesized polymer was performed by using $^1H$-NMR. Gel retardation assay, particle sizes and zeta potential measurement confirmed that the new gene carrier formed a compact complex with plasmid DNA. The complexes were smaller than 150 nm, which implicated its potential for intracellular delivery. It showed lower cytotoxicity in three different cell lines (Hela, MCF-7, and HepG2) than PEI 25 kDa. pGL3-lus was used as a reporter gene, and the transfection efficiency was in vitro measured in Hela cells. Solutol-g-PEI showed much higher transfection efficiency than unmodified PEI 25 kDa.

Overexpression and Characterization of Eukaryotic Peptide Hormone Precursors in E. Coli. (대장균에서 진핵세포 펩타이드 호르몬 전구물질의 대량생산과 특성규명)

  • 홍승환
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.303-309
    • /
    • 1990
  • In order to have a handle on the availability of eukarvotic peptide hormone precursors, a cDNA encoding angler fish prepro-SRIF I was manipulated so that it can be produced in large quantity from heterologous E. coli cells. Using T7 overexpression system, fusion constructs between the T7 phage coat protein Sl0 and the prepro-SRIF were made and modified as desired. From the host E. coli strain, BL21 DE3, harboring these plasmid constructs, three different SRIF related polypeptides were expressed in large amount and characterized. The results confirm the exact construction and authenticity of the overexpressed proteins from E. coli cells. The importance of this heterologous overexpression in hard to get peptide hormone precursors as well as the suitability of the target peptide hormone SRIF for this approach are discussed.

  • PDF

A New Deoxyhexose Biosynthetic Gene Cluster in Streptomyces griseus ATCC10137: Heterologous Expression of dTDP-D-Glucose 4,6-Dehydratase Gene

  • Kim, Sang Suk;Bang, Jung-Hee;Hyun, Chang-Gu;Kim, Joo-Woo;Han, Jae-Jin;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A novel 6-deoxyhexose biosynthetic gene cluster different from the one for the biosynthesis of streptomycin was isolated from Streptomyces griseus using specifically designed PCR primers to compare the sequence of known dTDP-glucose synthase genes. We cloned a 5.8-kb DNA from Streptomyces griseus ATCC10137, which contained the 4-ketoreductase homologue (grsB), dTDP-glucose synthase (grsD), and dTDP-glucose 4, 6-dehydratase (grsE) genes. Escherichia coli cultures containing plasmid of the PCR product which encoded the grsE region under the controUed T7 promoter were able to catalyze the formation of dTDP-4-keto-6-deoxy-D-glucose from TDP-glucose. The enzyme showed high substrate specificity, being specific to only dTDP-glucose that is known to be incorporated into secondary metabolites such as antibiotics.

  • PDF

Cloning and Characterization of a Glyoxalase I Gene from the Osmotolerant Yeast Candida magnoliae

  • Park, Eun-Hee;Lee, Dae-Hee;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.277-283
    • /
    • 2011
  • Glyoxalase I catalyzes the conversion of methylglyoxal to S-D-lactoylglutathione in the presence of glutathione. The structural gene of glyoxalase I (GLO1) was cloned from an osmotolerant yeast, Candida magnoliae, which produces a functional sweetener, erythritol, from sucrose. DNA sequence analysis revealed that the uninterrupted open reading frame (ORF) of C. magnoliae GLO1 (CmGLO1) spans 945 bp, corresponding to 315 amino acid residues, and shares 45.2% amino acid sequence identity to Saccharomyces cerevisiae Glo1. The cloned ORF in a multicopy constitutive expression plasmid complemented the glo1 mutation of S. cerevisiae, confirming that it encodes Glo1 in C. magnoliae. The responses of CmGLO1 to environmental stresses were different from those of S. cerevisiae, which only responds to osmotic stress. An enzyme activity assay and reverse transcription polymerase chain reaction revealed that the expression of CmGLO1 is induced by stress inducers such as methylglyoxal, $H_2O_2$, KCl, and NaCl. The GenBank Accession No. for CmGLO1 is HM000001.

Hemocyte-specific Promoter for the Development of Transgenic Silkworm, Bombyx mori

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong-Ryul;Choi, Gwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.111-114
    • /
    • 2012
  • In previous studies we have shown that a sw17255 gene was expressed in hemocyte-specific tissues of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). It was verified that the sw17255 core promoter region contains elements that regulate the expression of this gene in hemocyte tissue; the selected promoter region spans nucleotides -1 to -2,112 upstream of the start codon. Each of the luciferase reporter gene expression vectors under the control of 4 different kinds of promoter candidates, (-2,112/-1), (-1,640/-1), (-1,169/-1) and (-579/-1), and the control reporter plasmid DNA, were introduced into B. mori larval coelom by direct injection using a syringe. The promoter candidate [E] (-579/-1) showed more than 1.67 fold transcriptional activity compared to control promoter activity. Higher productivity of an expressed gene in the transgenic silkworm by this promoter combination could be achieved in the near future. The foreign recombinant protein could be easily harvested from the blood of the transgenic silkworm.

Optimized Recombinant DNA for the Secretion of Pediocin PA-1 in Escherichia coli

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.360-363
    • /
    • 2010
  • To enhance the expression and secretion of pediocin PA-1 from heterologous bacterial hosts, the promoter and deduced signal sequence (PS) of an $\alpha$-amylase gene from a Bifidobacterium adolescentis strain was fused with pediocin PA-1 structural and immunity genes (AB) and the resulting functions were evaluated in Escherichia coli. Two recombinant PCR products were created-one with just the deduced signal sequence and one with the sequence plus the Ser and Thr sequences that are the next two amino acids of the signal sequence. These two products, the PSAB (---AQA::KYY---) and PSABST (---AQA$\underline{ST}$::KYY---), respectively, were inserted into a TA cloning vector (yT&A) and named pPSAB, which was previously reported, and pPSABST. The two recombinant plasmid DNAs were transferred into E. coli JM109 and the transformants displayed antimicrobial activity, where the activity of E. coli JM109 (pPSAB) was stronger than that of E. coli JM109 (pPSABST), indicating that the ST amino acid residues were not necessary for secretion and might have even decreased the antimicrobial activity of recombinant pediocin PA-1.