• Title/Summary/Keyword: Plasma technology

Search Result 3,834, Processing Time 0.033 seconds

The Study of DNA Damage Induced by Atmospheric Pressure Plasma Jet and Their Mechanisms

  • Park, Yeunsoo;Song, Mi-Young;Yoon, Jung-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.1-155.1
    • /
    • 2013
  • The goals of this study are to elucidate the plasma effects on DNA molecules to apply some plasma based applications and also to find out the mechanisms of plasma-induced DNA damage in biomolecule. Nonthermal atmospheric pressure plasma has much potential for medical, agricultural and food applications for the future. The atmospheric pressure plasma jet (APPJ) contains radicals, charged particles, low energy electrons, excited molecules and UV light. It has been started doing experiments using APPJ at the early 21th. And some recent results showed that APPJ has a possibility to apply to new fields like mentioned above. But it is kind of at the very early stages of plasma based application. It is definitely necessary much of theoretical and experimental studies to further understanding to use nonthermal atmospheric pressure plasma in biomedical, agriculture and food parts. Here we introduce a new experimental system to study plasma effects on biomolecules. And we will show some recent results of LEE-induced DNA damage using electron irradiation apparatus under ultra-high vacuum.

  • PDF

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Effect of plasma polymerized film on fouling of heat exchangers

  • Kim, Ki-Hwan;Park, Sung-Chang;doo-Jin choi;Jung, Hyung-Jin;Ha, Sam-Chul;Kim, Chul-Hwan;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.160-160
    • /
    • 1999
  • To reduce the fouling of heat exchangers, the plasma polymerized films was coated on the heat exchangers, and an effect of plasma polymerized film on fouling of heat exchangers was investigated. Monomer and reactive gases were used as the precursors of plasma polymerization. Plasma polymerized films were deposited with process parameters of pressure, power, and ratio of gases. Plasma polymerized films could be served as functional layers of good wettability and high resistance to corrosion. Wettability of plasma polymerized film could be controlled by the ratio change gas mixture. Hydrophilicity of plasma polymerized films on heat exchanger in air conditioner can provide improvement in performance of heat exchanger which results from good water drainage, decrease of pressure drop. DC-plasma polymerized films improve resistance to corrosion whcih is related to deposit formation in heat exchangers. The difference in the build up of fouling deposits between bare substrate and plasma polymerized substrate was investigated by scanning electron microscopy (SEM). An effect of plasma polymerized film on fouling of heat exchangers was discussed in terms of surface properties such as wettability, surface chemical state.

  • PDF

Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

  • Ryu, Kwangsun;Lee, Junchan;Kim, Songoo;Chung, Taejin;Shin, Goo-Hwan;Cha, Wonho;Min, Kyoungwook;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.343-352
    • /
    • 2017
  • A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of ~1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.

Terahertz emission from a plasma dipole oscillation

  • Min Sup Hur;Manoj Kumar;Hyung Seon Song;Teyoun Kang
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.852-858
    • /
    • 2022
  • We studied an unrevealed characteristic of radiation emission from a localized plasma oscillator (plasma dipole oscillation-PDO). PDO is a novel concept of generating terahertz emission from a laser plasma-based system. The electromagnetic field generated by a PDO embedded in a uniform plasma, instead of being cut off by the ambient plasma as expected by a common but misleading sense, propagates long distances to escape the plasma eventually. The PDO-THz, differently from other laser plasma-based THz sources, utilizes the collective behavior of the plasma (plasma oscillations) and, accordingly, produces a quasi-narrow-band emission, which can potentially be useful in THz-based accelerator or THz-pump and probe experiments. We verified the PDO mechanism by using realistic three-dimensional particle-in-cell simulations.