DOI QR코드

DOI QR Code

Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

  • Ryu, Kwangsun (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Lee, Junchan (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kim, Songoo (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Chung, Taejin (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Shin, Goo-Hwan (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Cha, Wonho (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Min, Kyoungwook (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kim, Vitaly P. (Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN))
  • Received : 2017.10.18
  • Accepted : 2017.11.24
  • Published : 2017.12.15

Abstract

A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of ~1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.

Keywords

References

  1. Bilitza D, McKinnell LA, Reinisch B, Fuller-Rowell T, The international reference ionosphere today and in the future, J. Geod. 85, 909-920 (2011). https://doi.org/10.1007/s00190-010-0427-x
  2. Boyd RLF, Raitt WJ, Positive ion temperatures above the F-layer maximum, Space Research V, eds. King-Hele DG, Muller P, Righini G (North-Holland Publ. Co., Amsterdam, 1965), 207-211.
  3. Buchert S, Zangerl F, Sust M, Andre M, Eriksson A, et al., SWARM observations of equatorial electron densities and topside GPS track losses, Geophys. Res. Lett. 42, 2088-2092 (2015). https://doi.org/10.1002/2015GL063121
  4. Chen FF, von Goeler SE, Introduction to plasma physics and controlled fusion volume 1: Plasma physics, Phys. Today 38, 87 (1985). https://doi.org/10.1063/1.2814568
  5. Choi CR, Sohn J, Lee JC, Seo YM, Kang SB, et al., Scientific missions and technologies of the ISSS on board the NEXTSat-1, J. Astron. Space Sci. 31, 73-81 (2014). https://doi.org/10.5140/JASS.2014.31.1.73
  6. Cussac T, Clair MA, Ultre-Guerard P, Buisson F, Lassalle-Balier G, et al., The DEMETER microsatellite and ground segment, Planet. Space Sci. 54, 413-427 (2006). https://doi.org/10.1016/j.pss.2005.10.013
  7. DasGupta A, Ray S, Paul A, Banerjee P, Bose A, Errors in position-fixing by GPS in an environment of strong equatorial scintillations in the Indian zone, Radio Sci. 39, 1-8 (2004). https://doi.org/10.1029/2002RS002822
  8. Gekelman W, Pfister H, Lucky Z, Bamber J, Leneman D, et al., Design, construction, and properties of the large plasma research device - The LAPD at UCLA, Rev. Sci. Instrum. 62, 2875-2883 (1991). https://doi.org/10.1063/1.1142175
  9. Green BS, Validation and assessment of DMSP electron temperatures in the topside ionosphere, Master Dissertation, Air Force Institute of Technology (2001).
  10. Kawai Y, Ikegami H, Control of ion-energy distribution in a back-diffusion type plasma, Phys. Lett. A 32, 318-319 (1970). https://doi.org/10.1016/0375-9601(70)90524-4
  11. Kelly MA, Comberiate JM, Miller ES, Paxton LJ, Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda, Space Weather 12, 601-611 (2014). https://doi.org/10.1002/2014SW001081
  12. Langmuir I, Mott-Smith H, Studies of electric discharges in gas at low pressures Part I, Gen. Elec. Rev. 27, 449-455 (1924a).
  13. Langmuir I, Mott-Smith H, Studies of electric discharges in gas at low pressures Part II, Gen. Elec. Rev. 27, 538-548 (1924b).
  14. Langmuir I, Mott-Smith H, Studies of electric discharges in gas at low pressures Part III, Gen. Elec. Rev. 27, 616-623 (1924c).
  15. Langmuir I, Mott-Smith H, Studies of electric discharges in gas at low pressures Part IV, Gen. Elec. Rev. 27, 762-771 (1924d).
  16. Langmuir I, Mott-Smith H, Studies of electric discharges in gas at low pressures Part V, Gen. Elec. Rev. 27, 810-820 (1924e).
  17. Lebreton JP, Stverak S, Travnicek P, Maksimovic M, Klinge D, et al., The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results, Planet. Space Sci. 54, 472-486 (2006). https://doi.org/10.1016/j.pss.2005.10.017
  18. Lee JC, Min KW, Ham JW, Kim HJ, Lee JJ, et al., Langmuir probe experiments on Korean satellites, Curr. Appl. Phys. 13, 846-849 (2013). https://doi.org/10.1016/j.cap.2012.12.011
  19. Lee JJ, Ionospheric plasma diagnosis with Langmuir probe, PhD Dissertation, Korea Advanced Institute of Science and Technology (2002).
  20. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, et al., A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci. 33, 565-582 (1998). https://doi.org/10.1029/97RS02707
  21. Na GW, Yang J, Ryu K, Lee JC, Min KW, Test of Langmuir probes developed for the CubeSat LINK, J. Korean Phys. Soc. 68, 482-485 (2016). https://doi.org/10.3938/jkps.68.482
  22. Oyama KI, DC Langmuir probe for measurement of space plasma: A brief review, J. Astron. Space Sci. 32, 167-180 (2015). https://doi.org/10.5140/JASS.2015.32.3.167
  23. Park JH, A study on the plasma generated by thermionic low-pressure discharge to simulate the space plasma environment, Master Dissertation, Korea Advanced Institute of Science and Technology (2000).
  24. Qian L, Burns AG, Emery BA, Foster B, Lu G, et al., The NCAR TIE-GCM: A community model of the coupled thermosphere ionosphere system, in Geophysical Monograph Series, vol. 201, Modeling the Ionosphere-Thermosphere System, eds. Huba JD, Schunk RW, Khazanov GV (John Wiley & Sons Inc., Washington, DC, 2014), 73-83. https://doi.org/10.1002/9781118704417.ch7
  25. Reifman A, Dow WG, Dynamic probe measurements in the ionosphere, Phys. Rev. 76, 987-988 (1949). https://doi.org/10.1103/PhysRev.76.987
  26. Rother M, Schlegel K, Lühr H, Cooke D, Validation of CHAMP electron temperature measurements by incoherent scat -ter radar data, Radio Sci. 45, RS6020 (2010). https://doi.org/10.1029/2010RS004445
  27. Stone NH, Rehmann WK, The simulation of ionospheric conditions for space vehicles, NASA Technical Report, NASA/TN/D-5894 (1970).
  28. Straub HC, Renault P, Lindsay BG, Smith KA, Stebbings RF, Absolute partial cross sections for electron-impact ionization of $H_2$, $N_2$, and $O_2$ from threshold to 1000 eV, Phys. Rev. A 54, 2146-2153 (1996). https://doi.org/10.1103/PhysRevA.54.2146
  29. Takayama K, Ikegami H, Aihara S, This is a transfiguration of the back-diffusion-type plasma source developed in our laboratory, in Proceedings of the 8th International Conference on Phenomena in Ionized Gases 1967 (Springer-Verlag Wien, Vienna, 1967), 552.
  30. Wang SB, Wendt AE, Sheath thickness evaluation for collisionless or weakly collisional bounded plasmas, IEEE Trans. Plasma Sci. 27, 1358-1365 (1999). https://doi.org/10.1109/27.799813