• Title/Summary/Keyword: Plasma surface

Search Result 3,402, Processing Time 0.045 seconds

Surface modification of materials by thermal plasma (열플라즈마를 이용한 재료의 표면개질)

  • Kang, Seong-Pyo;Lee, Han Jun;Kim, Tae-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.308-318
    • /
    • 2022
  • The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

Study on the Effect of Sputtering Process on the Adhesion Strength of CrN Films Synthesized by a Duplex Surface Treatment Process (복합표면처리된 CrN박막의 밀착력에 미치는 스퍼터링 효과에 관한 연구)

  • Kim M.K.;Kim E.Y.;Kim J.T.;Lee S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • In this study, effect of sputtering after plasma nitriding and before PVD coating on the microstucture, microhardness, surface roughness and the adhesion strength of CrN thin films were investigated. Experimental results showed that this sputtering process not only removed surface compound layer which formed during a plasma nitriding process but also induced an alteration of the surface of plasma nitrided substrate in terms of microhardness distribution and surface roughness, which in turn affected the adhesion strength of PVD coatings. After sputtering, microhardness distribution showed general decrease and the surface roughness became increased slightly. The critical shear stress measured from the scratch test on the CrN coatings showed an approximately twice increase in the binding strength through the sputtering prior to the coating and this could be attributed to a complete removal of compound layer from the plasma nitrided surface and to an increase in the surface roughness after sputtering.

Study on Two Step Plasma Treatment for Electroless Cu Plating of Fluoropolymer (불소수지의 무전해 동도금을 위한 단계적 플라즈마 전처리법에 관한 연구)

  • Shin, Seung-Han;Han, Sung-Ho;Kim, Young-Seok
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.118-125
    • /
    • 2005
  • Low temperature plasma treatment with different gases and rf powers were performed to improve the adhesion strength between polytetrafluoroethylene(PTFE) and electroless deposited copper. According to the research, $H_2$ plasma having hydrogen radical was more effective in surface polarity modification than $O_2$ plasma due to the defluorination reaction. However, surface roughness of PTFE was more increased with $O_2$ than $H_2$ plasma. PTFE treated with $120W-O_2$ plasma and $250w-H_2$ plasma, consecutively showed rougher surface than single step $250w-H_2$ plasma treated one and more hydrophilic than single step $120W-O_2$ plasma treated one. And it showed 5B tape test grade, which is better adhesion property than 1B or 3B obtained by single step plasma treatment. In addition, adhesion strength between PTFE and Cu deposit is also deeply affected by residual water on its interface.