DOI QR코드

DOI QR Code

열플라즈마를 이용한 재료의 표면개질

Surface modification of materials by thermal plasma

  • 강성표 (원광대학교 화학융합공학과) ;
  • 이한준 (원광대학교 화학융합공학과) ;
  • 김태희 (원광대학교 화학융합공학과)
  • Kang, Seong-Pyo (Department of Chemical Engineering, Wonkwang University) ;
  • Lee, Han Jun (Department of Chemical Engineering, Wonkwang University) ;
  • Kim, Tae-Hee (Department of Chemical Engineering, Wonkwang University)
  • 투고 : 2022.11.02
  • 심사 : 2022.11.27
  • 발행 : 2022.12.31

초록

The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

키워드

과제정보

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임. (NRF-2020R1I1A1A01066501)

참고문헌

  1. M. I. Boulos, New frontiers in thermal plasma processing, Pure & Appl. Chem., 68 (1996) 1007-1010. https://doi.org/10.1351/pac199668051007
  2. K. S. Kim, T. H. Kim, Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials, J. Appl. Phys., 125 (2019) 070901. https://doi.org/10.1063/1.5060977
  3. T. Ishigaki, Y. Moriyoshi, Thermal plasma treatment of titanium carbide powders: Part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment, J. Mater. Res., 11 (2011) 2811-2824. https://doi.org/10.1557/JMR.1996.0356
  4. T. Ishigaki, H. Haneda, N. Okada, S. Ito, Surface modification of titanium oxide in pulse-modulated induction thermal plasma, Thin Solid Films, 390 (2001) 20-25. https://doi.org/10.1016/S0040-6090(01)00935-X
  5. C. M. Huang, L. C. Chen, K. W. Cheng, G. T. Pan, Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation, J. Mol. Catal. A Chem., 261 (2007) 218-224. https://doi.org/10.1016/j.molcata.2006.08.020
  6. H. Tanaka, T. Osawa, Y. Moriyoshi, M. Kurihara, S. Maruyama, T. Ishigaki, Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma, Thin Solid Films, 457 (2004) 209-216. https://doi.org/10.1016/j.tsf.2003.12.024
  7. H. Tanaka, J.Y. Xu, M. Kurihara, S. Maruyama, N. Ohashi, Y. Moriyoshi, T. Ishigaki, Anomalous improvement of the electrochemical properties of mesocarbon microbeads by Ar-H2-SF6 thermal plasma treatment, Carbon, 42 (2004) 3229-3235. https://doi.org/10.1016/j.carbon.2004.08.011
  8. A. Shahverdi, K. S. Kim, Y. Alinejad, G. Soucy, In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma, J. Nanopart. Res., 14 (2012) 14:660.
  9. Y. S. Na, S. Choi, D. W. Park, Carbon nanotube surface modification with the attachment of Si nanoparticles in a thermal plasma jet, Phys. Status Solidi A, 211 (2014) 2749-2755. https://doi.org/10.1002/pssa.201431377
  10. Y. Tanaka, T. Fujino, T. Iwao, Review of thermal plasma simulation technique, IEEJ Trans., 14 (2019) 1582-1594.
  11. Y. Tanaka, Time-dependent two-temperature chemically nonequilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure, J. Phys. D: Appl. Phys., 39 (2006) 307-319. https://doi.org/10.1088/0022-3727/39/2/011
  12. K. Kuraishi, M. Akao, Y. Tanaka, Y. Uesugi, T. Ishijima, Temperature behavior in a tandem type of modulated induction thermal plasma for materials processings, J. Phys.: Conf. Ser., 441 (2013) 012016. https://doi.org/10.1088/1742-6596/441/1/012016
  13. Y. Maruyama, Y. Tanaka, H. Irie, T. Tsuchiya, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, H. Kawaura, Rapid surface oxidation of the Si substrate using longitudinally-long Ar/O2 loop type of inductively coupled thermal plasmas, IEEE Trans. Plasma Sci., 44 (2016) 3164-3171. https://doi.org/10.1109/TPS.2016.2603999
  14. M. K. S. Tial, H. Irie, Y. Maruyama, Y. Tanaka, Y. Uesugi, T. Ishijima, Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing, Jpn. J. Appl. Phys., 55 (2016) 07LB03. https://doi.org/10.7567/JJAP.55.07LB03
  15. T. Tsuchiya, Y. Tanaka, Y. Maruyama, A. Fujita, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, H. Kawaura, Loop type of inductively coupled thermal plasmas system for rapid two-dimensional oxidation of Si substrate surface, Plasma Chem. Plasma Process, 38 (2018) 599-620. https://doi.org/10.1007/s11090-018-9881-7
  16. K. VanEvery, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, J. Almer, Column formation in suspension plasma-sprayed coatings and resultant thermal properties, J. Therm. Spray Tech., 20 (2011) 817-828. https://doi.org/10.1007/s11666-011-9632-2
  17. R. S. Lima, B. R. Marple, Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Tech., 16 (2007) 40-63. https://doi.org/10.1007/s11666-006-9010-7
  18. P. Xu, L. Pershin, J. Mostaghimi, T. W. Coyle, Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray, Mater. Lett., 211 (2018) 24-27. https://doi.org/10.1016/j.matlet.2017.09.077
  19. R. K. Sahoo, A. Das, S. K. Singh, B. K. Mishra, Synthesis of surface modified SiC superhydrophobic coating on stainless steel surface by thermal plasma evaporation method, Surf. Coat. Technol., 307 (2016) 476-483. https://doi.org/10.1016/j.surfcoat.2016.09.027
  20. P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang, Plasma-surface modification of biomaterials, Mater. Sci. Eng. R Rep., 36 (2002) 143-206. https://doi.org/10.1016/S0927-796X(02)00004-9
  21. H. Kurzweg, R. B. Heimann, T. Troczynski, M. L. Wayman, Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia, Biomaterials, 19 (1998) 1507-1511. https://doi.org/10.1016/S0142-9612(98)00067-2
  22. S. W. K. Kweh, K. A. Khor, P. Cheang, Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock : microstructure and mechanical properties, Biomaterials, 21 (2000) 1223-1234. https://doi.org/10.1016/S0142-9612(99)00275-6