• 제목/요약/키워드: Plasma modeling

검색결과 216건 처리시간 0.028초

On the Etching Mechanism of Parylene-C in Inductively Coupled O2 Plasma

  • Shutov, D.A.;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.156-162
    • /
    • 2008
  • We report results on a study of inductively coupled plasma (ICP) etching of Parylene-C (poly-monochloro-para-xylylene) films using an $O_2$ gas. Effects of process parameters on etch rates were investigated and are discussed in this article from the standpoint of plasma parameter measurements, performed using a Langmuir probe and modeling calculation. Process parameters of interest include ICP source power and pressure. It was shown that major etching agent of polymer films was oxygen atoms O($^3P$). At the same time it was proposed that positive ions were not effective etchant, but ions played an important role as effective channel of energy transfer from plasma towards the polymer.

신경회로망을 이용한 플라즈마 식각공정의 최적운영과 이상검출에 관한 연구 (A Study on The Optimal Operation and Malfunction Detection of Plasma Etching Utilizing Neural Network)

  • 고택범;차상엽;이석주;최순혁;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.433-440
    • /
    • 1998
  • The purpose of this study is to provide an integrated process control system for plasma etching. The control system is designed to employ neural network for the modeling of plasma etching process and to utilize genetic algorithm to search for the appropriate selection of control input variables, and to provide a control chart to maintain the process output within a desired range in the real plasma etching process. The target equipment is the one operating in DRAM production lines. The result shows that the integrated system developed is practical value in the improved performance of plasma etching process.

  • PDF

사각형 유도 결합 플라즈마 시스템의 수치 모델링 (Numerical Modeling of a Rectangular Type Inductively Coupled Plasma System)

  • 주정훈
    • 한국표면공학회지
    • /
    • 제45권4호
    • /
    • pp.174-180
    • /
    • 2012
  • Low pressure inductively coupled plasma characteristics of argon and oxygen are numerically simulated for a 400 mm rectangular type system with a plasma fluid model. The results showed lower power absorption profile at the corner than a circular one in a 13.56 MHz driven 1.5 turn antenna system with a drift-diffusion and quasi-neutrality assumption. Ions controlled by electric field are more non-uniform than metastables and the power absorption profile of oxygen plasma is affected by horizontal gas flow pattern to show 25% lower power absorption at the pumping flange side. Oxygen negative ions which are generated in electron collisional dissociation of oxygen molecules was calculated as 0.1% of oxygen atoms with similar spatial profile.

Enhancement of the Virtual Metrology Performance for Plasma-assisted Processes by Using Plasma Information (PI) Parameters

  • Park, Seolhye;Lee, Juyoung;Jeong, Sangmin;Jang, Yunchang;Ryu, Sangwon;Roh, Hyun-Joon;Kim, Gon-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.132-132
    • /
    • 2015
  • Virtual metrology (VM) model based on plasma information (PI) parameter for C4F8 plasma-assisted oxide etching processes is developed to predict and monitor the process results such as an etching rate with improved performance. To apply fault detection and classification (FDC) or advanced process control (APC) models on to the real mass production lines efficiently, high performance VM model is certainly required and principal component regression (PCR) is preferred technique for VM modeling despite this method requires many number of data set to obtain statistically guaranteed accuracy. In this study, as an effective method to include the 'good information' representing parameter into the VM model, PI parameters are introduced and applied for the etch rate prediction. By the adoption of PI parameters of b-, q-factors and surface passivation parameters as PCs into the PCR based VM model, information about the reactions in the plasma volume, surface, and sheath regions can be efficiently included into the VM model; thus, the performance of VM is secured even for insufficient data set provided cases. For mass production data of 350 wafers, developed PI based VM (PI-VM) model was satisfied required prediction accuracy of industry in C4F8 plasma-assisted oxide etching process.

  • PDF

수치모델과 고속 CCD 카메라를 이용한 세변기 표면 처리 효과 특성 해석 (Surface Treatment Effect on the Toilet by Numerical Modeling and High Speed CCD Camera)

  • 노지현;도우리;양원균;주정훈
    • 한국표면공학회지
    • /
    • 제44권1호
    • /
    • pp.32-37
    • /
    • 2011
  • Numerical analysis is done to investigate the effect of surface treatment of a toilet on the cleanness. The surface treatment using plasma for the super-hydrophobic surface expects the self-cleaning effect of the toilet seat cover for preventing the droplets with a great quantity of bacteria during the toilet flushing after evacuation. In this study, the fluid analysis in the toilet during the flushing was performed by an ultrahigh-speed CCD camera with 1,000 frame/sec and the numerical modeling. And the spattering phenomenon from the toilet surface during urine was analyzed quantitatively by CFD-ACE+ with a free surface model and a mixed model of two fluids. If the surface tension of the toilet surface is weak, many urine droplets after collision bounded in spite of considering the gravity. The turbulence generated by the change of angle and velocity of urine and the variation of the collision phenomenon from toilet surface were modeled numerically.

H2/N2 가스론 이용한 CCP 플라즈마 모델링 (Modeling of CCP plasma with H2/N2 gas)

  • 손채화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.158-159
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multilayer interconnection layers. In order to reduce the RC delay, low-k materials will be used for inter-metal dielectric (IMD) materials. We have developed self-consistent simulation tool that includes neutral-species transport model, based on the relaxation continuum (RCT) model. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatiotemporal steady state profile could be obtained.

  • PDF

유전알고리즘과 신경회로망을 이용한 플라즈마 식각공정의 모델링과 최적제어입력탐색 (Modeling and optimal control input tracking using neural network and genetic algorithm in plasma etching process)

  • 고택범;차상엽;유정식;우광방;문대식;곽규환;김정곤;장호승
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.113-122
    • /
    • 1996
  • As integrity of semiconductor device is increased, accurate and efficient modeling and recipe generation of semiconductor fabrication procsses are necessary. Among the major semiconductor manufacturing processes, dry etc- hing process using gas plasma and accelerated ion is widely used. The process involves a variety of the chemical and physical effects of gas and accelerated ions. Despite the increased popularity, the complex internal characteristics made efficient modeling difficult. Because of difficulty to determine the control input for the desired output, the recipe generation depends largely on experiences of the experts with several trial and error presently. In this paper, the optimal control of the etching is carried out in the following two phases. First, the optimal neural network models for etching process are developed with genetic algorithm utilizing the input and output data obtained by experiments. In the second phase, search for optimal control inputs in performed by means of using the optimal neural network developed together with genetic algorithm. The results of study indicate that the predictive capabilities of the neural network models are superior to that of the statistical models which have been widely utilized in the semiconductor factory lines. Search for optimal control inputs using genetic algorithm is proved to be efficient by experiments. (author). refs., figs., tabs.

  • PDF

유체역학에 바탕한 플라즈마 모델링을 통한 유전체 장벽 방전 플라즈마의 전파 특성 해석 (Electromagnetic Characteristics of Dielectric Barrier Discharge Plasma Based on Fluid Dynamical Modeling)

  • 김유나;오일영;홍용준;육종관
    • 한국전자파학회논문지
    • /
    • 제24권3호
    • /
    • pp.331-336
    • /
    • 2013
  • 본 논문은 유체 역학적 관점에서 플라즈마 모델링을 통하여 전자 밀도를 계산하는 방식을 제안하였다. 그럼으로써 기존 논문들에서 사용된 단순화된 플라즈마 모델링의 한계를 극복하였다. 계산된 전자 밀도를 finite-difference time-domain(FDTD) 기법에 기반한 맥스웰-볼츠만 시스템에 연계하여 다양한 각도에서 입사하는 전자기파에 대한 산란파 계산을 수행하였다. 전반부에서는 유전체 장벽 방전(dielectric barrier discharge: DBD) 구조에서 발생되는 플라즈마를 모델링하였다. 다수의 모델링 방식 중, 시간 독립적인 변수를 도입하여 정지계의 전위 분포와 전자 밀도 분포를 계산하는 Suzen-Huang 모델을 이용하였다. 후반부에서는 변조된 가우시안 펄스를 플라즈마에 입사시켜 발생하는 산란파를 FDTD 기법을 이용하여 계산하였으며, 이를 바탕으로 레이더 단면적(radar cross section: RCS)을 관찰하였다. 모의실험 결과, DBD 플라즈마에 의해 1~2 dB 감소하는 것을 관찰할 수 있었다. 이는 기존의 논문에서 알려진 RCS 측정 결과와 유사한 양상을 보이며, 본 논문에서 제안한 모델링의 유효성을 확인하였다.

Plasma Chemistry Data Research for Plasma Applications

  • Yoon, Jung-Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.77-77
    • /
    • 2012
  • As interest has increased in the interaction between low-temperature plasmas and materials, the role of modeling and simulation of processing in plasma has become important in understanding the effects of charged particles and radicals in plasma applications. Thus in this presentation, we present the theoretical and experimental studies of electron impact cross section for plasma processing gas, such as plasma etching and deposition processes. Also, here the work conducted at the Data Center for Plasma Properties (DCPP) over last 7 years on the systematic synthesis and assessment of fundamental knowledge on low-energy electron interactions with plasma processing gases is briefly summarized and discussed.

  • PDF