• Title/Summary/Keyword: Plasma etch rate

Search Result 381, Processing Time 0.023 seconds

Dry Etching Characteristics of $HfAlO_3$ Thin Films using Inductively Coupled Plasma (고밀도 플라즈마를 이용한 $HfAlO_3$ 박막의 식각 특성 연구)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.382-382
    • /
    • 2010
  • The etch characteristics of the $HfAlO_3$ thin films and selectivity of $HfAlO_3$ to $SiO_2$ in $Cl_2/BCl_3$/Ar plasma were investigated in this work. The maximum etch rate was 108.7 nm/min and selectivity of $HfAlO_3$ to $SiO_2$ was 1.11 at $Cl_2$(3sccm)/$BCl_3$(4sccm)/Ar(16sccm), RF power of 500 W, DC-bias voltage of - 100 V, process pressure of 1 Pa and substrate temperature of $40^{\circ}C$. As increasing RF power and DC-bias voltage, etch rates of the $HfAlO_3$ thin films increased. Whereas as decreasing of the process pressure, those of the $HfAlO_3$ thin films were increased. The chemical reaction on the surface of the etched the $HfAlO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS).

  • PDF

Fluorine-based inductively coupled plasma etching of ZnO film (ZnO 박막의 fluorine-계 유도결합 플라즈마 식각)

  • Park, Jong-Cheon;Lee, Byeong-Woo;Kim, Byeong-Ik;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.230-234
    • /
    • 2011
  • High density plasma etching of ZnO film was performed in $CF_4$/Ar and $SF_6$/Ar inductively coupled plasmas. Maximum etch rates of ~1950 ${\AA}$/min and ~1400 ${\AA}$/min were obtained for $10CF_4$/5Ar and $10SF_6$/5Ar ICP discharges, respectively. The etched ZnO surfaces showed better RMS roughness values than the unetched control sample under most of the conditions examined. In the $10CF_4$/5Ar ICP discharges, very high etch selectivities were obtained for ZnO over Ni (max. 11) while Al showed etch selectivities in the range of 1.6~4.7 to ZnO.

High Density Inductively Coupled Plasma Etching of III-V Semiconductors in BCI3Ne Chemistry (BCI3Ne 혼합가스를 이용한 III-V 반도체의 고밀도 유도결합 플라즈마 식각)

  • 백인규;임완태;이제원;조관식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1187-1194
    • /
    • 2003
  • A BCl$_3$/Ne plasma chemistry was used to etch Ga-based (GaAs, AIGaAs, GaSb) and In-based (InGaP, InP, InAs and InGaAsP) compound semiconductors in a Planar Inductively Coupled Plasma (ICP) reactor. The addition of the Ne instead of Ar can minimize electrical and optical damage during dry etching of III-V semiconductors due to its light mass compared to that of Ar All of the materials exhibited a maximum etch rate at BCl$_3$ to Ne ratios of 0.25-0.5. Under all conditions, the Ga-based materials etched at significantly higher rates than the In-based materials, due to relatively high volatilities of their trichloride etch products (boiling point CaCl$_3$ : 201 $^{\circ}C$, AsCl$_3$ : 130 $^{\circ}C$, PCl$_3$: 76 $^{\circ}C$) compared to InCl$_3$ (boiling point : 600 $^{\circ}C$). We obtained low root-mean-square(RMS) roughness of the etched sulfate of both AIGaAs and GaAs, which is quite comparable to the unetched control samples. Excellent etch anisotropy ( > 85$^{\circ}$) of the GaAs and AIGaAs in our PICP BCl$_3$/Ne etching relies on some degree of sidewall passivation by redeposition of etch products and photoresist from the mask. However, the surfaces of In-based materials are somewhat degraded during the BCl$_3$/Ne etching due to the low volatility of InCl$_{x}$./.

Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing (내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지)

  • Jae Ho Choi;Young Min Byun;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

Reactive Ion Etching of GaN Using $BCI_3/H_2/Ar$ Inductively Coupled Plasma ($BCI_3/H_2/Ar$ 유도결합 플라즈마를 이용한 GaN의 건식 식각에 관한 연구)

  • Kim, Sung-Dae;Jung, Seog-Yong;Lee, Byung-Taek;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.179-183
    • /
    • 2000
  • The reactive ion etching process of GaN using $BCI_3/H_2/Ar$ high density inductively coupled plasma was investigated. Results showed that both of the etch rate and the sidewall verticality significantly increased as the ICP power, bias voltage, and the $BCI_3$ ratio were increased whereas effects of the other variables were minimal. The maximum etch rate of about 175nm/min was obtained at the condition of ICP power 900W, bias voltage 400V, 4mTorr, and 60% $BCI_3$, which resulted in reasonably smooth etched surface. Etch residues were observed in the case of samples etched at the low bias conditions, which were proposed to be as the $GaCI_x$ compounds.

  • PDF

Study of characteristics of SBT etching using $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마를 이용한 SBT 박막 식각에 관한 연구)

  • Kim, Dong-Pyo;Seo, Jung-Woo;Kim, Seung-Bum;Kim, Tae-Hyung;Chang, Eui-Goo;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1553-1555
    • /
    • 1999
  • Recently, $SrBi_2Ta_2O_9$(SBT) and $Pb(ZrTi)O_3$(PZT) were much attracted as materials of capacitor for ferroelectric random access memory(FRAM) showing higher read/write speed, lower power consumption and nonvolartility. Bi-layered SBT thin film has appeared as the most prominent fatigue free and low operation voltage for use in nonvolatile memory. To highly integrate FRAM, SBT thin film should be etched. A lot of papers on SBT thin film and its characteristics have been studied. However, there are few reports about SBT thin film due to difficulty of etching. In order to investigate properties of etching of SBT thin film, SBT thin film was etched in $CF_4$/Ar gas plasma using magnetically enhanced inductively coupled plasma (MEICP) system. When $CF_4/(CF_4+Ar)$ is 0.1, etch rate of SBT thin film was $3300{\AA}/min$, and etch rate of Pt was $2495{\AA}/min$. Selectivities of SBT to Pt. $SiO_2$ and photoresist(PR) were 1.35, 0.6 and 0.89, respectively. With increasing $CF_4$ gas, etch rate of SBT thin film and $P_t$ decreased.

  • PDF

The etch characteristic of TiN thin films by using inductively coupled plasma (유도결합 플라즈마를 이용한 TiN 박막의 식각 특성 연구)

  • Park, Jung-Soo;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Heo, Kyung-Moo;Wi, Jae-Hyung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.74-74
    • /
    • 2009
  • Titanium nitride has been used as hardmask for semiconductor process, capacitor of MIM type and diffusion barrier of DRAM, due to it's low resistivity, thermodynamic stability and diffusion coefficient. Characteristics of the TiN film are high intensity and chemical stability. The TiN film also has compatibility with high-k material. This study is an experimental test for better condition of TiN film etching process. The etch rate of TiN film was investigated about etching in $BCl_3/Ar/O_2$ plasma using the inductively coupled plasma (ICP) etching system. The base condition were 4 sccm $BCl_3$ /16 sccm Ar mixed gas and 500 W the RF power, -50 V the DC bias voltage, 10 mTorr the chamber pressure and $40\;^{\circ}C$ the substrate temperature. We added $O_2$ gas to give affect etch rate because $O_2$ reacts with photoresist easily. We had changed $O_2$ gas flow rate from 2 sccm to 8 sccm, the RF power from 500 W to 800 W, the DC bias voltage from -50 V to -200 V, the chamber pressure from 5 mTorr to 20 mTorr and the substrate temperature from $20\;^{\circ}C$ to $80\;^{\circ}C$.

  • PDF

An Investigation of Selective Etching of GaAs to Al\ulcornerGa\ulcornerAs Using BCI$_3$SF\ulcorner Gas Mixture in ECR Plasma (ECR 플라즈마에서 $BCI_3/SF_6$ 혼합 가스를 이용한 $Al_{0.25}Ga_{0.75}As$에 대한 GaAs의 선택적 식각에 대한 연구)

  • 이철욱;이동율;손정식;배인호;박성배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.447-452
    • /
    • 1998
  • The selective dry etching of GaAs to Al\ulcornerGa\ulcornerAs using $BCI_3/SF_6$ gas mixture in electron cyclotron resonance(ECR) plasma is investigated. A selectivity of GaAs to AlGaAs of more than 100 and maximum etch rate of GaAs are obtained at a gas ratio $SF_6/BCI_3+SF_6$ of 25%. We verified the formation of $AlF_3$ on $Al_{0.25}Ga_{0.75}As$from the Auger spectra which enhanced the etch selectivity. In order to investigate surface damage of AlGaAs caused by ECR plasma, we performed a low temperature photoluminescence(PL) measurement as a function of RF power. As the RF power. As the RF power increases, the PL intensity decreases monotonically from 50 to 100 Wand then repidly decreases until 250 W. This behavior is due to surface damage by plasma treatment. This dry etching technique using $BCI_3/SF_6$ gas mixture in ECR plasma is suitable for gate recess formation on the GaAs based pseudomorphic high electron mobility transistor(PHEMT)

  • PDF

Dry Etching Characteristics of TiN Thin Films in BCl3/He Inductively Coupled Plasma (BCl3/He 유도결합 플라즈마를 이용한 TiN 박막의 식각 특성)

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.681-685
    • /
    • 2012
  • We investigated the dry etching characteristics of TiN in $TiN/Al_2O_3$ gate stack using a inductively coupled plasma system. TiN thin film is etched by BCl3/He plasma. The etching parameters are the gas mixing ratio, the RF power, the DC-bias voltages and process pressures. The highest etch rate is in $BCl_3/He$ (25%:75%) plasma. The selectivity of TiN thin film to $Al_2O_3$ is pretty similar with $BCl_3/He$ plasma. The chemical reactions of the etched TiN thin films are investigated by X-ray photoelectron spectroscopy. The intensities of the Ti 2p and the N 1s peaks are modified by $BCl_3$ plasma. Intensity and binding energy of Ti and N could be changed due to a chemical reaction on the surface of TiN thin films. Also we investigated that the non-volatile byproducts such as $TiCl_x$ formed by chemical reaction with Cl radicals on the surface of TiN thin films.

The Study on the surface of SBT Thin Film after Etching in Ar/$CI_2$ Plasma (Ar/$CI_2$ 식각 후 SBT 박막의 표면에 관한 연구)

  • 김동표;김창일;이원재;유병곤;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.363-366
    • /
    • 2000
  • In this study, SrBi$_2$Ta$_2$$O_{9}$ (SBT) thin films were etched at different Cl$_2$gas mixing ratio in Cl$_2$/Ar. The maximum etch rate of SBT was 883 $\AA$/min in Cl$_2$(20%)/Ar(80%). The result indicates that physical sputtering of charged particles is dominant to chemical reaction in etching SBT thin films. To evaluate the changes of morphology and crystallinity on the near surface of etched SBT, atomic force microscopy (AFM) and x-ray diffraction (XRD) were used. The rms values of etched samples in Ar only or Cl$_2$ only plasma were higher than that of as-deposited, Cl$_2$/Ar Plasma. The SBT (105) crystalinity of the etched samples decreased in Af only or Cla only plasma, but maintain constant in ClyAr plasma. This can be illustrated by a decrease of Bi content or nonvolatile etching products (Sr-Cl and Ta-Cl), resulting in the changes of stoichiometry on the etched surface of the SBT thin films. The decrease of Bi content and nonvolatile etch products were revealed by x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS).).

  • PDF