• Title/Summary/Keyword: Plasma etch rate

Search Result 381, Processing Time 0.029 seconds

Dry etching of BST thin films using inductively coupled plasma (유도결합플라즈마를 이용한 BST 박막의 건식 식각 특성)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Dong-Pyo;Lee, Cheol-In;Kim, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.187-190
    • /
    • 2004
  • In this work, we investigated etching characteristics and mechanism of BST thin films using $Cl_2$/Ar, $CF_4/Cl_2$/Ar and $BCl_3/Cl_2$/Ar gas mixtures using inductively coupled plasma (ICP) system. A chemically assisted physical etch of BST was experimentally confirmed by ICP under various gas mixtures. The etch rate of the BST thin films had a maximum value at 20 $BCl_3$ and 10% $CF_4$ gas concentration, and decreased with further addition of $BCl_3$ or $CF_4$ gas, because $BaCl_x$, $SrCl_x$, $BaF_x$ and $SrF_x$ compounds have higher melting and boiling points. The maximum etch rate of the BST thin films was 57nm/min at the 30% $Cl_2(Cl_2+Ar)$. The characteristics of the plasma were analyzed by using OES and Langmuir probe.

  • PDF

Effect of CF4 Addition on Ferroelectric YMnO3Thin Film Etching (강유전체 YMnO3 박막 식각에 대한 CF4첨가효과)

  • 박재화;김경태;김창일;장의구;이철인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.314-318
    • /
    • 2002
  • The etching behaviors of the ferroelectric $YMnO_3$ thin films were studied by an inductively coupled plasma (ICP). The maximum etch rate of $YMnO_3$ thin film is 300 ${\AA}/min$ at Ar/$Cl_2$of 2/8, RF power of 800W, dc bias voltage of 200V, chamber pressure of 15mTorr and substrate temperature of $30^{\circ}C$. Addition of $CF_4$ gas decrease the etch rate of $YMnO_3$ thin film. From the results of XPS analysis, nonvolatile $YF_x$ compounds were found on the surface of $YMnO_3$ thin film which is etched in Ar/$Cl_2$/CF$_4$plasma. The etch profile of YMnO$_3$film is improved by addition of $CF_4$ gas into the Ar/$Cl_2$ plasma. These results suggest that YF$_{x}$ compound acts as a sidewall passivants which reduce the sticking coefficient of chlorine on $YMnO_3$.

Etch Mechanism of $Y_2O_3$ Thin Films in High Density Plasma (고밀도 플라즈마에 의한 $Y_2O_3$ 박막의 식각 메커니즘 연구)

  • 김영찬;김창일;장의구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.25.1-28
    • /
    • 2000
  • In this study, $Y_2O_3$ thin films were etched with inductively coupled plasma (ICP). The etch rate of $Y_2O_3$ , and the selectivity of $Y_2O_3$ to YMnO$_3$were investigated by varying $Cl_2$/($Cl_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2O_3$ , and the selectivity of $Y_2O_3$ to YMnO$_3$ were 302/min, and 2.4 at $Cl_2$/($Cl_2$+Ar) gas mixing ratio of 0.2 repetitively. In x-ray photoelectron spectroscopy (XPS) analysis, $Y_2O_3$ thin film was dominantly etched by Ar ion bombardment, and was assisted by chemical reaction of Cl radical. These results were confirmed by secondary ion mass spectroscopy(SIMS) analysis. YCl, and $YC_3$ existed at 126.03 a.m.u, and 192.3 a.m.u, respectively.

  • PDF

Etch Mechanism of $Y_{2}O_{3}$ Thin Films in High Density Plasma (고밀도 플라즈마에 의한 $Y_{2}O_{3}$박막의 식각 메커니즘 연구)

  • 김영찬;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.25-28
    • /
    • 2000
  • In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma (ICP). The etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity Of $Y_2$O$_3$ to YMnO$_3$ were 302/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 repectively. In x-ray photoelectron spectroscopy (XPS) analysis, $Y_2$O$_3$ thin film was dominantly etched by Ar ion bombardment, and was assisted by chemical reaction of Cl radical. These results were confirmed by secondary ion mass spectroscopy(SIMS) analysis. YCI, and YCl$_3$ existed at 126.03 a.m.u, and 192.3 a.m.u, respectively

  • PDF

High rate dry etching of Si in fluorine-based inductively coupled plasmas

  • Cho, Hyun;Pearton, S.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.220-225
    • /
    • 2004
  • Four different Fluorine-based gases ($SF_6/,NF_3, PF_5,\; and \; BF_3$) were examined for high rate Inductively Coupled Plasma etching of Si. Etch rates up to ~8$\mu\textrm{m}$/min were achieved with pure $SF_6$ discharges at high source power (1500 W) and pressure (35 mTorr). A direct comparison of the four feedstock gases under the same plasma conditions showed the Si etch rate to increase in the order $BF_3$ < $NF_3$< $PF_5$ < $SF_6$. This is in good correlation with the average bond energies of the gases, except for $NF_3$, which is the least strongly bound. Optical emission spectroscopy showed that the ICP source efficiently dissociated $NF_3$, but the etched Si surface morphologies were significantly worse with this gas than with the other 3 gases.

A Study of Etching Characteristics of the ZnO Thin Film Using a SF6/Ar Inductively Coupled Plasma (SF6/Ar 유도결합플라즈마를 이용한 ZnO 박막의 식각 특성에 관한 연구)

  • Kang, Sung-Chil;Lee, Yoon-Chan;Lee, Jin-Su;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.935-938
    • /
    • 2011
  • The etching characteristics of ZnO and etch selectivities of ZnO to $SiO_2$ in $SF_6$/Ar plasma were investigated using Inductively-coupled-plasma (ICP). The maximum etch rates of ZnO were 6.5 nm/min at $SF_6$(50%)/Ar(50%), Source power (700 W), Bias power (250 W), Working pressure(8 mTorr). The etch rate of ZnO showed a non-monotonic behavior with increasing from 0% to 50% Ar fraction in $SF_6$/ Ar plasma. The plasma diagnostic were characterized using Optical Emission Spectroscopy (OES) analysis measurements.

Etching Properties of ZnS:Mn Thin Films in an Inductively Coupled Plasma

  • Kim, Gwan-Ha;Woo, Jong-Chang;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS is an attractive material for future optical and electrical devices since it has a direct and wide band gap to provide blue emission at room temperature. In this study, inductively coupled $BCl_3/Ar$ plasma was used to etch ZnS:Mn thin films. The maximum etch rate of 164.2 nm/min for ZnS:Mn was obtained at a $BCl_3(20)/Ar(80)$ gas mixing ratio, an rf power of 700 W, a dc bias voltage of -200V, a total gas flow of 20 sccm, and a chamber pressure of 1Pa. The etch behaviors of ZnS:Mn thin films under various plasma parameters showed that the ZnS:Mn were effectively removed by the chemically assisted physical etching mechanism. The surface reaction of the ZnS:Mn thin films was investigated by X-ray photoelectron spectroscopy. The XPS analysis revealed that Mn had detected on the surface ZnS:Mn etched in $BCl_3/Ar$ plasma.

Etch characteristics of ZnO thin films using an inductively coupled plasma ($BCl_3/Ar/Cl_2$ 유도결합 플라즈마를 이용한 ZnO 박막의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Yang, Xuel;Heo, Keyong-Moo;Park, Jung-Soo;Ha, Tae-Kyung;Wi, Jae-Hyung;Joo, Young-Hee;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.135-136
    • /
    • 2009
  • The etching characteristics of Zinc Oxide (ZnO) and etch selectivity of ZnO to $SiO_2$ in $BCl_3/Ar/Cl_2$ plasma were investigated. It was found that ZnO etch rate shows a non-monotonic behavior with increasing both Ar fraction in $BCl_3$ plasma, RF power, and gas pressure. The maximum ZnO etch rate of 53 nm/min was obtained for $BCl_3$(16 sccm)/Ar(4 sccm)/$Cl_2$(3 sccm) gas mixture. The chemical state of etched surfaces was investigated with X-ray photoelectron spectroscopy (XPS). From these data, the suggestions on the ZnO etch mechanism were made.

  • PDF

Study of plasma induced charging damage and febrication of$0.18\mu\textrm{m}$dual polysilicon gate using dry etch (건식각을 이용한 $0.18\mu\textrm{m}$ dual polysilicon gate 형성 및 plasma damage 특성 평가)

  • 채수두;유경진;김동석;한석빈;하재희;박진원
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.490-495
    • /
    • 1999
  • In 0.18 $\mu \textrm m$ LOGIC device, the etch rate of NMOS polysilicons is different from that of PMOS polysilicons due to the state of polysilicon to manufacture gate line. To control the etch profile, we tested the ratio of $Cl_2$/HBr gas and the total chamber pressure, and also we reduced Back He pressure to get the vertical profile. In the case of manufacturing the gate photoresist line, we used Bottom Anti-Reflective Coating (BARC) to protect refrection of light. As a result we found that $CF_4O_2$ gas is good to etch BARC, because of high selectivity and good photoresist line profile after etching BARC. in the results of the characterization of plasma damage to the antenna effect of gate oxide, NO type thin film(growing gate oxide in 0, ambient followed by an NO anneal) is better than wet type thin film(growing gate oxide in $0_2+H_2$ ambient).

  • PDF

$N_2$ Gas roles on Pt thin film etching using Ar/$C1_2/N_2$ Plasma (Ar/$C1_2/N_2$플라즈마를 이용한 Pt 박막 식각에서 $N_2$ Gas의 역할)

  • 류재홍;김남훈;이원재;유병곤;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.468-470
    • /
    • 1999
  • One of the most critical problem in etching of platinum was generally known that the etch slope was gradual. therefore, the addition of $N_2$ gas into the Ar/C1$_2$ gas mixture, which has been proposed the optimized etching gas combination for etching of platinum in our previous article, was performed. The selectivity of platinum film to oxide film as an etch mask increased with the addition of N2 gas, and the steeper etch slope over 75 $^{\circ}$ could be obtained. These phenomena were interpreted the results the results of a blocking layer such as Si-N or Si-O-N on the oxide mask. Compostional analysis was carried out by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Moreover, it could be obtained the higher etch rate of Pt film and steeper profile without residues such as p.-Cl and Pt-Pt ant the addition N\ulcorner of 20 % gas in Ar(90)/Cl$_2$(10) Plasma. The Plasma characteristic was extracted from optical emissionspectroscopy (OES).

  • PDF