DOI QR코드

DOI QR Code

A Study of Etching Characteristics of the ZnO Thin Film Using a SF6/Ar Inductively Coupled Plasma

SF6/Ar 유도결합플라즈마를 이용한 ZnO 박막의 식각 특성에 관한 연구

  • Kang, Sung-Chil (Department of Control and Instrument Engineering, Korea University) ;
  • Lee, Yoon-Chan (Department of Control and Instrument Engineering, Korea University) ;
  • Lee, Jin-Su (Department of Control and Instrument Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrument Engineering, Korea University)
  • 강성칠 (고려대학교 제어계측공학과) ;
  • 이윤찬 (고려대학교 제어계측공학과) ;
  • 이진수 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과)
  • Received : 2011.10.17
  • Accepted : 2011.10.31
  • Published : 2011.12.01

Abstract

The etching characteristics of ZnO and etch selectivities of ZnO to $SiO_2$ in $SF_6$/Ar plasma were investigated using Inductively-coupled-plasma (ICP). The maximum etch rates of ZnO were 6.5 nm/min at $SF_6$(50%)/Ar(50%), Source power (700 W), Bias power (250 W), Working pressure(8 mTorr). The etch rate of ZnO showed a non-monotonic behavior with increasing from 0% to 50% Ar fraction in $SF_6$/ Ar plasma. The plasma diagnostic were characterized using Optical Emission Spectroscopy (OES) analysis measurements.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng., B80, 383 (2001).
  2. T. Aoki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett., 76, 3257 (2000). https://doi.org/10.1063/1.126599
  3. W. Lim, L. Voss, R. Khanna, B. P. Gila, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Surf. Sci., 253, 889 (2006). https://doi.org/10.1016/j.apsusc.2006.01.037
  4. H. J. Lee, B. S. Kwon, H. W. Kim, S. I. Kim, D. G. Yoo, J. H. Boo, and N. E. Lee, J . Appl. Phys., 47, 6960 (2008). https://doi.org/10.1143/JJAP.47.6960
  5. Y. H. Ham, Alexander Efremov, H. W. Lee, S. J. Yun, N. K. Min, K. S. Kim, and K. H. Kwon, Jpn. J . Appl. Phys., 49, (2010).
  6. K. H. Kwon, S. Y. Kang, S. K. Lee, S. I. Kim, N. K. Hong, S. Nahm, and Y. S. Kim, J . Electrochem. Soc., 149, 280 (2002).
  7. J. H. Park, N. E. Lee, J. Ch. Lee, J. S. Park, and H. D. Park, Microelectron. Eng., 82, 119 (2005). https://doi.org/10.1016/j.mee.2005.07.006
  8. Z. W. Pan, Z. P. Dai, and Z. L. Wang, Science, 291, 1947 (2001). https://doi.org/10.1126/science.1058120
  9. T. W. Scharf, S. V. Prasad, M. T. Dugger, P. G. Kotula, and R. K. Grubbs, Acta Mater., 54, 4731 (2006). https://doi.org/10.1016/j.actamat.2006.06.009
  10. G. K. Lee, J. H. Moon, and B. T. Lee, Semicond. Sci. Technol., 21, 971 (2006). https://doi.org/10.1088/0268-1242/21/7/024
  11. C. H. Tsai and J. M. Shao, J . Hazard. Mater., 157, 201 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.010
  12. A. Addamiano and P. A. Dell, J . Phys. Chem., 61, 1020 (1957). https://doi.org/10.1021/j150553a050