• Title/Summary/Keyword: Plasma curing unit

Search Result 25, Processing Time 0.019 seconds

INFLUENCE OF LIGHT SOURCE AND CURING TIME ON SURFACE HARDNESS OF RESIN COMPOSITES (중합 광원과 중합 시간이 복합레진의 표면 경도에 미치는 영향)

  • Bae, Sang-Man;Lee, Kwang-Hee;Kim, Dae-Eup;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • The purpose of study was to compare the plasma arc light with the halogen light in compostie resin curing. Three composite resin materials(Z-100, 3M, USA; Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, USA) were filled in the teflon molds (4mm in diameter and 2, 3, 4, 5mm in thickness) and cured with either the conventional low-intensity light curing unit with a halogen lamp (Optilux 360, Demetron, U.S.A.) for duration of 40 seconds or with the high-intensity light curing unit with a plasma arc lamp (Flipo, Lokki, France) for duration of 3, 6, and 9 seconds. The intensity of halogen light was about $370mW/cm^2$ and that of plasma light was about $1,900mW/cm^2$. After one week, the surface hardnesses of both the top and the bottom of the resin samples were measured with a microhardness tester(MXT70, Matsuzawa, Japan). There were significant differences in the hardness between the top and the bottom of the resin samples except the 2mm thickness samples cured by halogen light for 40s or by plasma light for 9s. There was no significant difference between the hardness values of the top surfaces of the thickness groups. The hardness values of the bottom surfaces decreased as the curing time decreased and as the thickness of resin samples increased, and the three kinds of resin composites showed similar patterns. The results suggest that the halogen light for 40 seconds might be able to cure greater depth of resin composites than the plasma light for 3, 6, or 9 seconds.

  • PDF

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.

MICROTENSILE BOND STRENGTH ACCORDING TO DIFFERENT DENTIN WALL POSITIONS AND CURING LIGHTS IN CLASS I CAVITY OF PRIMARY MOLAR (유구치 I급 와동에서 와동벽 위치와 중합광원에 따른 Microtensile Bond Strength 비교 연구)

  • Lee, Hyeon-Heon;Jang, Chul-Ho;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.62-72
    • /
    • 2007
  • The purpose of present study was to determine whether different kinds of curing lights can alter microtensile bond strength(MTBS) of class I cavity pulpal and axial wall specimens in primary molar. Thirty clean mandibular 2nd primary molar's occlusal enamel were removed and class I cavity, size of $2{\times}4{\times}2mm$ was prepared. Dentin bonding agent was applied according to manufacturer's manual. Each group was cured with Halogen Curing Unit, Plasma Curing Unit and LED Curing Unit. Composite resin was bulk filled and photo cured with same curing unit. MTBS specimens which size is $0.7{\times}0.7{\times}4mm$ were prepared with low speed saw. Specimens were coded by their curing lights and wall positions (Halogen - Axial wall group, Halogen - Pulpal wall group, Plasma - Axial wall group, Plasma - Pulpal wall group, LED - Axial wall group, LED - Pulpal walt group). MTBS were tested at 1 mm/min cross Head speed by Universal Testing Machine. Fractured surface and bonding surface was observed with SEM. T-test between axial and pulpal specimens in each curing lights, one-way ANOVA among different curing light specimens in each wall positions were done. Weibull distribution analysis was done. The results were as follows : Mean MTBS of pulpal wall specimens were significantly greater than that of axial wall specimens at each curing units(p<.05). There was no significant difference in the MTBS among three curing units at axial wall and pulpal wall. In Weibull distribution, pulpal wall specimens were more homogeneous than axial wall specimens.

  • PDF

Effects of plasma arc curing lights on the surface hardness of the composite resins (플라즈마 광중합기가 복합레진 중합에 미치는 영향)

  • Lee, Soo-Won;Yang, Kyu-Ho;Kim, Seon-Mi;Choi, Nam-Ki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.624-632
    • /
    • 2006
  • In recent years, xenon plasma arc lamp was introduced for high-intensity curing of composite filling materials in direct resin restorations. In this study, two types of restorative materials, namely composites point $4^{(R)}$ and $Z250^{(R)}$ were selected and curing was conducted using a conventional halogen light and two plama curing lights. Two different resin composites were cured using the different units($Flipo^{(R)}$, Ultra-lite 180A, and $TriLight^{(R)}$) and tested for microhardness. The purpose of this study was to test the hypothesis that exposure to a plasma curing lamp for 3, 6. 9 seconds is equivalent to 20 or 40 seconds of irradiation using a conventional halogen curing unit. 1. $Flipo^{(R)}$ and Ultra-lite 180A were able to polymerize point $4^{(R)}$ at 6 seconds to a degree equal to that of the $TriLight^{(R)}$(control) at 40 seconds. 2. $Flipo^{(R)}$ was able to polymerize $Z250^{(R)}$ at 9 seconds to a degree equal to that of the $TriLight^{(R)}$(control) on the bottom surface at 20 seconds. whereas Ultra-lite 180A could not do. 3. Two plasma curing units were able to cure the test-composites with bottom/top ratios approximately 61% to 96% at 3 to 9 seconds. There were some differences between the two composite brands, with $Z250^{(R)}$ displaying less difference between top and bottom hardness values. For point $4^{(R)}$ and $Z250^{(R)}$, at least 6 or 9 seconds were necessary to produce microhardness equivalent to that of the $TriLight^{(R)}$ curing at 20 or 40 seconds.

  • PDF

A STUDY OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO FILLING METHODS USING STRAIN GAUGE (스트레인 게이지를 이용한 적층방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kim, Eung-Hag;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.18-29
    • /
    • 2008
  • The purpose of this study was to compare the polymerization shrinkage of several filling methods using strain gauges. In this study, a light-emitting diode(LED) curing unit(Elipar Freeligh2, 3M EPSE, USA) and plasma arc lamp(PAL) curing unit(Flipo, LOKKI, France) were used for curing, Filtek $Z350^{TM}$(3M EPSE, USA) composite resin was used for the cavity filling. Sixty permanent bicuspid teeth, that were extracted for orthodontic treatment, were studied. The cavities were prepared on the occlusal surface and were filled using the following methods : 1) bulk filling, 2) parallel filling, 3) oblique filling The strain was recorded on the buccal, lingual, mesial and distal surfaces and the strain values were computed into stress values. The shear bond strength of each filling method was tested using a Micro Universal Testing machine. The results can be summarized as follows: 1. In the strain changes, all LED and PAL curing groups showed an increase on the buccal surface and a slow decrease as time elapsed. 2. In the strain changes of the mesial and distal surfaces, the decreases and increases were shown repeatedly and reduced as time elapsed. 3. There were no significant statistical strain changes among filling methods in the LED or PAL curing groups. 4. There were significant statistical strain changes between the LED and PAL curing groups on the buccal surface(p<0.05). 5. From the shear bond strength results, in the LED curing group, filling method 3 showed lower surface stress than filling method 1 and 2(p<0.05). In the PAL curing group, there were no significant statistical strain changes between each filling method. 6. The surface stress of each group was lower than the shear bond strength.

  • PDF

Evaluation of New LED Curing Light on Resin Composite Polymerization (발광 다이오드 광중합기의 복합레진 중합 평가)

  • Kang, Jieun;Jun, Saeromi;Kim, Jongbin;Kim, Jongsoo;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • The purpose of this study is to compare efficiency of broad spectrum LEDs ($VALO^{(R)}$, Ultradent, USA) with conventional LED curing lights ($Elipar^{TM}$ Freelight 2, 3M ESPE, USA) using a microhardness test. The light curing units used were $VALO^{(R)}$ in three different modes and $Elipar^{TM}$ Freelight 2. The exposure time was used according to the manufacturer's instructions. After cured resin specimens were stored in physiological saline at $37^{\circ}C$ for 24 hours, microhardness was measured using Vickers microhardness tester. The microhardness of upper and lower sides of the specimens were analyzed separately by the ANOVA method (Analysis of Variance) with a significance level set at 5%. At upper side of resin specimens, an increased microhardness was observed in the broad spectrum LED curing light unit with a high power mode for 4 seconds and plasma emulation mode for 20 seconds (p < 0.05). However, at the lower side of resin specimens, there were no significant differences in microhardness between broad spectrum LED curing light unit and conventional LED curing light unit.

Comparison of the degree of conversion of light-cured resin cement in regard to porcelain laminate thickness, light source and curing time using FT-IR (도재 라미네이트 두께와 광원 및 광조사 시간에 따른 광중합형 레진 시멘트의 FT-IR을 이용한 중합도 비교)

  • Yuh, Chi-Sung;Kim, Jee-Hwan;Kim, Sun-Jai;Lee, Yong-Keun;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2009
  • Statement of problem: The degree of light attenuation at the time of cementation of the PLV restoration depends on characteristics such as thickness, opacity and shade of the restorations, which interfere with light transmittance and, as a result, may decrease the total energy reaching the luting cement. Purpose: The purpose of this study was to compare the degree of conversion of light-cured resin cements measuring by FT-IR in regard to different thickness, light devices and curing time. Material and methods: In the control group, a clear slide glass (1.0 mm) was positioned between the light cured resin cement and light source. The specimens of ceramics were made with IPS Empress Esthetic. The ceramics were fabricated with varying thicknesses-0.5, 1.0, 1.5 mm with shade ETC1. Rely $X^{TM}$ Veneer with shade A3, light-cured resin cement, was used. Light-activation was conducted through the ceramic using a quartz tungsten halogen curing unit, a light emitting diode curing unit and a plasma arc curing unit. The degree of conversion of the light-cured resin cement was evaluated using FT-IR and OMNIC. One-way ANOVA and Tukey HSD test were used for statistical analysis ($\alpha$< .05). Results: The degree of conversion (DC) of photopolymerization using QTH and LED was higher than results of using PAC in the control group. After polymerization using QTH and LED, the DC results from the different ceramic thickness- 0.5 mm, 1.0 mm, 1.5 mm- did not show a significant difference when compared with those of control group. However, the DC for polymerization using PAC in the 1.5mm ceramic group showed significantly lower DC than those of the control group and 0.5 mm ceramic group (P<.05). At 80s and 160s, the DC of light-cured resin cement beneath 1.0 mm ceramic using LED was significantly higher than at 20s (P<.05). Conclusion: Within the limitation of this study, when adhering PLV to porcelain with a thickness between 0.5-1.5 mm, the use of PAC curing units were not considered however, light cured resin cements were effective when cured for over 40 seconds with QTH or LED curing units. Also, when curing the light cured resin cements with LED, the degree of polymerization was not proportional with the curing time. Curing exceeding a certain curing time, did not significantly affect the degree of polymerization.

Shear bond strength of dentin bonding agents cured with a plasma arc curing light (전단접착강도와 관련된 Plasma Arc Curing Light의 중합효율평가)

  • Kwon, Young-Chul;Kim, Sun-Young;Chung, Sae-Joon;Han, Young-Chul;Lee, In-Bog;Son, Ho-Hyun;Um, Chung-Moon;Cho, Byeong-Hoon
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.213-223
    • /
    • 2008
  • The objective of this study was to compare dentin shear bond strength (DSBS) of dentin bonding agents (DBAs) cured with a plasma arc (PAC) light curing unit (LCU) and those cured with a light emitting diode (LED) LCU. Optical properties were also analyzed for Elipar freelight 2 (3M ESPE); LED LCU, Apollo 95E (DMT Systems); PAC LCU and VIP Junior (Bisco); Halogen LCU. The DBAs used for DSBS test were Scotchbond Multipurpose (3M ESPE), Singlebond 2 (3M ESPE) and Clearfil SE Bond (Kuraray). After DSBS testing, fractured specimens were analyzed for failure modes with SEM. The total irradiance and irradiance between 450 nm and 490 nm of the LCUs were different. LED LCU showed narrow spectral distribution around its peak at 462 nm whereas PAC and Halogen LCU showed a broad spectrum. There were no significant differences in mean shear bond strength among different LCUs (P > 0.05) but were significant differences among different DBAs (P < 0.001).

  • PDF

Shear bond strength of dentin bonding agents cured with a plasma arc curing light (전단접착강도와 관련된 Plasma Arc Curing Light의 중합효율평가)

  • Kwon, Young-Chul;Kim, Sun-Young;Chung, Sae-Joon;Han, Young-Chul;Lee, In-Bog;Son, Ho-Hyun;Um, Chung-Moon;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.213-223
    • /
    • 2008
  • The objective of this study was to compare dentin shear bond strength (DSBS) of dentin bonding agents (DBAs) cured with a plasma arc (PAC) light curing unit (LCU) and those cured with a light emitting diode (LED) LCU. Optical properties were also analyzed for Elipar freelight 2 (3M ESPE); LED LCU, Apollo 95E (DMT Systems); PAC LCU and VIP Junior (Bisco); Halogen LCU. The DBAs used for DSBS test were Scotchbond Multipurpose (3M ESPE), Singlebond 2 (3M ESPE) and Clearfil SE Bond (Kuraray). After DSBS testing, fractured specimens were analyzed for failure modes with SEM. The total irradiance and irradiance between 450 nm and 490 nm of the LCUs were different. LED LCU showed narrow spectral distribution around its peak at 462 nm whereas PAC and Halogen LCU showed a broad spectrum. There were no significant differences in mean shear bond strength among different LCUs (P > 0.05) but were significant differences among different DBAs (P < 0.001)

ELUTION OF RESIDUAL MONOMER ACCORDING TO VARIOUS LIGHT SOURCES AND CURING TIME ON THE POLYMERIZATION OF PHOTOACTIVATED PIT AND FISSURE SEALANTS (광중합 광원의 종류와 조사시간에 따른 치면열구전색제의 미반응 모노머 용출)

  • Oh, You-Hyang;Park, Yoon-Kyung;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.421-430
    • /
    • 2004
  • The purpose of this study was to measure and compare the amount of unreacted TEGDMA from pit and fissure sealants cured with three different light sources; conventional halogen light curing unit, plasma arc light curing unit and argon laser. The specimens were eluted in distilled water for different time intervals. The time-related release of TEGDMA were analyzed by reverse-phase high performance liquid chromatography(HPLC). The result of present study can be summarized as follows: 1. The time-related release of TEGDMA decreased with increasing curing time in conventional halogen light, however, that not statistically significant difference(p>0.05). 2. The elution from the specimens cured for 6 and 9 seconds with plasma arc light was similar results corresponding with the time-related TEGBMA release, and was significantly lower than that cured for 3 seconds(p<0.05). 3. The elution of TEGDMA from the specimens cured with argon laser was significantly higher than that cured with halogen and plasma arc light(p<0.05). 4. The elution of TEGDMA from under recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). 5. In time-related release of TEGDMA from recommended time of each light sources, the results correspond to 40 seconds of halogen light and 6 seconds of plasma arc light were similar(p>0.05). 6. The elution of TEGDMA, from over recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). In this study, I suggest that curing time of plasma arc light is 6 and/or 9 seconds in the field of clinical pediatric dentistry claiming its effectiveness in optimal polymerization and reduced chair time.

  • PDF