• Title/Summary/Keyword: Plasma arc curing light

Search Result 38, Processing Time 0.028 seconds

A STUDY ON THE SHEAR BOND STRENGTH BY PLASMA ARC CURING SYSTEM FOR BRACKET BONDING (Plasma arc curing system을 이용한 브라켓의 접착에 관한 연구)

  • Kim, Jung-Yoon;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.638-642
    • /
    • 2001
  • Recently, plasma arc curing system for curing resin composites has been introduced. This is characterized by a high output of light energy, which has the advantage of reducing the chair time and thereby making the treatment more comportable for the patients as well as for the dentist. The purpose of this study was to compare the shear bond strengths of light-cured orthodontic adhesive polymerized with conventional halogen light and plasma arc light. The 2 curing devices used were the XL3000 (3M, USA) conventional curing light and the Flipo (LOKKI, France) plasma arc light. The results from the present study can be summarized as fellows; 1. The mean shear bond strength for three groups were quite similar for 50 second conventional light group, 2 second plasma arc curing light group, 5 second plasma arc curing light group. 2. There was no statistically significant difference for three groups(p>0.05).

  • PDF

COMPARISON OF THE DECREE OF CONVERSION IN LIGHT-CURED COMPOSITE RESIN CURED BY HALOGEN AND PLASMA XENON ARC LAMP CURING UNIT (Halogen lamp 광조사기와 Plasma xenon arc lamp 광조사기에 의한 광중합 복합레진의 중합률 비교)

  • Lee, Young-Jun;Jeong, Byung-Cho;Choi, Nam-Ki;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.328-336
    • /
    • 2002
  • Recently, new light curing unit utilizing the plasma xenon arc lamp is introduced. This curing unit is operated at relatively high intensity, so shortening the curing time significantly. The aim of this experiment was to estimate curing capability of plasma xenon arc lamp curing unit compared to traditional halogen lamp curing unit. Degree of conversion was evaluated by Raman spectroscopy after irradiation of specimens with halogen lamp curing unit(Optilux 150, Demetron, USA) for 20s, 40s, 60s and plasma xenon arc lamp curing unit(flipo, Lokki, France) for 2s, 3s, 6s. The results showed that strong light intensity of plasma xenon arc lamp curing unit did not compensate for short exposure time completely. So, Multi-layered curing within 2mm thickness and additional exposure time is recommanded when light-cured composite resin is polymerized with plasma xenon arc lamp curing unit.

  • PDF

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

Comparison of the shear bond strength of brackets in regards to the light curing source (광중합기의 광원에 따른 브라켓 전단결합강도 비교)

  • Cha, Jung-Yul;Lee, Kee-Joon;Park, Sun-Hyung;Kim, Tae-Weon;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.198-206
    • /
    • 2006
  • With the introduction of the xenon plasma arc curing light and the LED curing light as orthodontic curing lights, the polymerizing time of orthodontic composites has clearly decreased. In contrast to various research cases regarding the polymerization time and bond strength of the xenon plasma arc curing light, not enough research exists on the LED curing light, including the appropriate polymerization time. The objective of this research was to compare the bond strength of the plasma curing light and the LED curing light in regards to the polymerization time. The polymerization time needed to achieve an appropriate adhesion strength of the bracket has also been studied. After applying orthodontic brackets using composite resin onto 120 human premolars, the plasma arc curing light and the LED curing light were used for polymerization for 4, 6, and 8 seconds accordingly. This research proved that the LED curing light provided appropriate bond strength for mounting orthodontic brackets even with short seconds of polymerization. The expensive cost and large size of the device limits the use of the plasma arc curing light, whereas the low cost and easy handling of the LED curing light may lead to greater use in orthodontics.

Effects of light direction and exposure times of plasma arc light on shear bond strength of metal brackets (Plasma arc light를 이용한 금속 브라켓의 부착시 광조사 방향과 중합시간이 전단결합강도에 미치는 영향)

  • Roh, Sang-Jeong;Lee, Hyun-Jung;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.429-438
    • /
    • 2004
  • The purpose of this study was to compare the effects of different light direction exposure times and setting times when using plasma arc light on shear bond strength of metal brackets. 240 extracted human premolars were randomly assigned to one of 16 groups Standardized brackets were bonded to enamel using different light curing units (Plasma arc light and Halogen light), exposure times (Plasma arc light 2. 4, 6 seconds and Halogen light 20 seconds). and light directions [Vertical direction [V] and Oblique direction [O]). 8 groups were tested after 5 minutes and the remaining 8 groups after 24 hours. The metal brackets were bonded with Transbond XT. Shear bond strength was measured by a universal testing machine. The results were as fellows: There were as differences between the shear bond strengths of the Vertical groups (V) and Oblique groups (O). regardless of exposure times and types of light curing units (p>0.05). The shear bond strength of the group with 2 seconds of plasma light were significantly lower than other exposure time groups (P<0.05). The shear bond strength tested after 5 minutes was lower than after 24 hours (p<0.05) The Adhesive Remment Index (ARI) score showed no statistically significant difference among the different groups. The results of this study suggested that the light direction of plasma arc light had no influence on the shear bond strength of metal brackets to enamel. and exposure times more than 4 seconds produced shear bond strengths similar to those Produced with a conventional halogen curing light.

Comparison of light transmittance in different thicknesses of zirconia under various light curing units

  • Cekic-Nagas, Isil;Egilmez, Ferhan;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2012
  • PURPOSE. The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS. A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (${\alpha}$=.05). RESULTS. ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance ($P$ <.001). CONCLUSION. Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials.

Shear bond strength and adhesive failure pattern in bracket bonding with plasma arc light (Plasma arc light를 이용한 bracket 부착시의 전단결합강도와 파절양상의 유형)

  • Yoo, Hyung-Seok;Oh, Young-Geun;Lee, Seung-Yeon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.261-270
    • /
    • 2001
  • The purpose of this study was to evaluate the clinical usefulness of plasma arc light which can reduce the curing time dramatically compared by shear bond strengths and failure patterns of the brackets bonded with visible light in direct bracket bonding. Some kinds of brackets were bonded with the Transbond$^{\circledR}$ to the human premolars which were embedded in the resin blocks according to the various conditions. After bonding, the shear bond strength was tested by Instron universal testing machine and in addition , the amount of residual adhesive remaining on the tooth after debonding was measured by the stereoscope and assessed with adhesive remnant index(ARI). The results were as follows : 1. When plasma arc light was used for bonding the brackets, the shear bond strength was clinically sufficient in both metal and ceramic brackets, but resin brackets showed significantly lower bond strength but which was clinically useful. 2. When metal brackets were bonded using visible light, there was no significant difference in shear bond strength due to the light-curing time and the bond strength was clinically sufficient. 3. When the adhesive failure patterns of brackets bonded with plasma arc light were observed by using the adhesive remnant index, the bond failure of the metal and resin bracket occurred more frequently at bracket-adhesive interface but the failure of the ceramic bracket occurred more frequently at enamel-adhesive interface. 4. There was no statistically significant difference of the shear bond strength and adhesive failure pattern between metal bracket bonded for 2 seconds by curing with plasma arc light and 10 seconds by curing with visible light. 6. When metal brackets were bonded using plasma arc light, the shear bond strength decreased as the distance from the light source increased. The above results suggest that plasma arc light can be clinically useful for bonding the brackets without fear of the decrease of the shear bond strength.

  • PDF

The shear bond strength and adhesive failure pattern in bracket bonding with different light-curing methods (브라켓 접착시 광중합방식에 따른 전단결합강도와 파절양상 비교)

  • Shin, Jai-Ho;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.333-342
    • /
    • 2004
  • The purpose of this study was to evaluate the clinical effectiveness of a plasma arc light and light emitting diode (LED), compared with shear bond strength and the failure pattern of brackets bonded with visible light in direct bonding. Brackets were bonded with Transbond XT to 60 human premolars embedded in the resin blocks according to different light-curing methods. Then, the shear bond strength of each group was measured using a universal testing machine (Instron) and the adhesive failure pattern after debonding was visually examined by light microscope. The results were as follows: 1. The shear bond strength showed no significant difference between the visible light and light emitting diode, but the plasma arc light exhibited a significantly lower shear bond strength compared with the visible light and light emitting diode. 2. In the visible light and light emitting diode, adhesive failure patterns were similar. Bond failure occurred more frequently at the enamel-adhesive interface. 3. The bonding failure of brackets bonded with plasma arc light occurred more frequently at the bracket-adhesive interface. The results of this study suggest that plasma arc light, light emitting diode and visible light are all clinically useful in the direct bonding of orthodontic brackets.

INFLUENCE OF TIP DISTANCE ON DEGREE OF CONVERSION OF COMPOSITE RESIN IN CURING WITH VARIOUS LIGHT SOURCES (광원에 따른 조사거리의 증가가 복합레진의 중합도에 미치는 영향)

  • Kim, Sang-Bae;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.273-279
    • /
    • 2004
  • Recently, newly developed single high-intensity LED curing lights for composite resins are claimed to have a higher intensity than previous LED curing lights and to results in optimal properties and short curing time. The purpose of this study was to determine the curing effectiveness of the curing units and to evaluate the relationship between the degree of polymerization and distance from curing light tip end to resin surface. One composite resin was tested(Filtek Z250). Thin film specimens were cured with a LED curing unit(Elipar Freelight 2, 10s), Plasma Arc curing unit(Flipo, 6s), Halogen curing light(XL3000, 20s) at four curing light tip to the resin surface(0mm, 2mm, 4mm, 6mm). Degree of conversion of composite resins were determined by a Fourier Transform Infrared Spectrometer(FTIR). From the present study, the following results were obtained. 1. In all curing units, relative light intensity was significantly decreased according to the increase of distance of light tip to the resin surface(p<0.05). LED curing units showed a higher percentile decrease in intensity than other curing units. 2. In all curing units, degree of conversion was decreased as increase of the distance but no statistically significant difference(p>0.05) except between 4mm and 6mm(p<0.05). 3. When comparing degree of conversion of light curing units at each distance(0mm, 2mm, 4mm, 6mm), LED curing light had a higher degree of conversion than plasma arc and halogen curing lights at 0, 2, 4mm(p<0.05). At 6mm, there was a no significant difference among the curing units(p>0.05).

  • PDF

A STUDY ON THE EVALUATION OF POLYMERIZATION SHRINKAGE OF COMPOSITE AND COMPOMER USING STRAIN GAUGE METHOD (스트레인 게이지법을 이용한 복합레진과 컴포머의 중합수축 평가에 관한 연구)

  • Kim, Yeun-Chul;Kim, Jong-Soo;Kwon, Soon-Won;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • The purpose of this study was to compare the polymerization shrinkage and the compressive strength of composite and compomer cured with two different light sources ; conventional halogen-light curing unit and recently-developed plasma arc curing unit. The 'strain gauge method' was used for determination of polymerization shrinkage and the compressive strength was measured by universal testing machine. The results of the present study can be summarized as follows: 1. Filling materials in polyethylene molds showed the initial expansion in the early phase of polymerization. This was followed by the rapid contraction in volume during the first 60 seconds and gradually diminished as curing process continued. 2. The polymerization shrinkage in tooth samples was generally lower than in the mold samples. 3. The generally lower amount of linear polymerization shrinkage was observed in compomer and plasma arc curing unit group when compared to composite and conventional curing unit. 4. The higher compressive strength values was found in composite groups regardless curing methods. The results of this study strongly support the application of plasma arc system and fluoride-containing compomer in the field of clinical pediatric dentistry claiming its effectiveness in curing the esthetic dental materials and the anticariogenic capacity.

  • PDF