Comparison of the shear bond strength of brackets in regards to the light curing source

광중합기의 광원에 따른 브라켓 전단결합강도 비교

  • Cha, Jung-Yul (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Lee, Kee-Joon (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Park, Sun-Hyung (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Tae-Weon (Private Clinic) ;
  • Yu, Hyung-Seog (Department of Orthodontics, College of Dentistry, Yonsei University)
  • 차정열 (연세대학교 치과대학 교정학교실) ;
  • 이기준 (연세대학교 치과대학 교정학교실) ;
  • 박선형 (연세대학교 치과대학 교정학교실) ;
  • 김태원 (개인치과의원) ;
  • 유형석 (연세대학교 치과대학 교정학교실)
  • Published : 2006.06.30

Abstract

With the introduction of the xenon plasma arc curing light and the LED curing light as orthodontic curing lights, the polymerizing time of orthodontic composites has clearly decreased. In contrast to various research cases regarding the polymerization time and bond strength of the xenon plasma arc curing light, not enough research exists on the LED curing light, including the appropriate polymerization time. The objective of this research was to compare the bond strength of the plasma curing light and the LED curing light in regards to the polymerization time. The polymerization time needed to achieve an appropriate adhesion strength of the bracket has also been studied. After applying orthodontic brackets using composite resin onto 120 human premolars, the plasma arc curing light and the LED curing light were used for polymerization for 4, 6, and 8 seconds accordingly. This research proved that the LED curing light provided appropriate bond strength for mounting orthodontic brackets even with short seconds of polymerization. The expensive cost and large size of the device limits the use of the plasma arc curing light, whereas the low cost and easy handling of the LED curing light may lead to greater use in orthodontics.

제논 플라즈마 아크 광중합기나 LED 광중합기가 치과영역에 소개된 이후로 기존의 텅스텐 할로겐 광중합기를 사용할 때에 비해 교정장치의 부착시간이 현저하게 줄어들 수 있게 되었다. 제논 플라즈마 아크 광중합기에 대한 중합시간과 전단강도에 대해서는 여러 연구가 있어왔던 반면, LED 광중합기를 이용하여 교정용장치의 부착을 위한 중합시간에 대한 연구는 미진하다. 본 연구의 목적은 LED 광중합기의 중합시간에 따른 결합강도를 플라즈마 아크 광중합기와 비교하여 적절한 브라켓의 부착강도를 얻기 위해 요구되는 중합시간을 알아보는데 있다. 120개의 발치된 사람의 소구치에 컴포짓 레진으로 브라켓을 부착시킨 후 4초, 6초, 8초 동안 플라즈마 아크 광원과 LED 광원으로 각각 중합시켰다. 그 후 결합강도를 만능시험기(Universal Testing Machine)로 계측한 결과, 플라즈마 아크 광중합기에서는 4초 이상에서, LED 광중합기에서는 8초 이상의 중합시간에서 기존의 할로겐 광원을 40초간 노출시켰을 때와 비슷한 전단결합강도를 나타내었다. 플라즈마 아크 광중합기와 LED 광중합기의 중합시간이 접착제 잔류지수 (adhesive remnant index) 수치에 대해 영향을 미치지 않았다.

Keywords

References

  1. Newman SM, Murray GA, Yates JL. Visible lights and visible light-activated composite resins. J Prosthet Dent 1983;50:31-5 https://doi.org/10.1016/0022-3913(83)90161-0
  2. Oesterle LJ, Newman SM, Shellhart WC. Comparative bond strength of brackets cured using a pulsed xenon curing light with 2 different light-guide sizes. Am J Orthod Dentofacial Orthop 2002;122:242-50 https://doi.org/10.1067/mod.2002.126728
  3. Oesterle LJ, Newman SM, Shellhart WC. Rapid curing of bonding composite with a xenon plasma arc light. Am J Orthod Dentofacial Orthop 2001;119:610-6 https://doi.org/10.1067/mod.2001.113652
  4. Pettemerides AP, Sherriff M, Ireland AJ. An in vivo study to compare a plasma arc light and a conventional quartz halogen curing light in orthodontic bonding. Eur J Orthod 2004;26:573-7 https://doi.org/10.1093/ejo/26.6.573
  5. Mills RW. Blue light emitting diodes - another method of light curing- Br Dent J 1995;178:169
  6. Fujibayashi K, Ishimaru K, Takahashi N, Kohno A. Newly developed curing unit using blue light-emitting diodes. Dent Jap 1998;34:49-53
  7. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999;15:275-81 https://doi.org/10.1016/S0109-5641(99)00047-0
  8. Bishara SE, Trulove TS. Comparisons of different debonding techniques for ceramic brackets: an in vitro study. Part I. Background and methods. Am J Orthod Dentofacial Orthop 1990;98:145-53 https://doi.org/10.1016/0889-5406(90)70008-Z
  9. Bagis YH, Rueggeberg FA. The effect of post-cure heating on residual, unreacted monomer in a commercial resin composite. Dent Mater 2000;16:244-7 https://doi.org/10.1016/S0109-5641(00)00006-3
  10. Imazato S. Torii M, Tsuchitani Y, McCabe JF, Russell RR. Incorporation of bacterial inhibitor into resin composite. J Dent Res 1994;73:1437-43 https://doi.org/10.1177/00220345940730080701
  11. Demke RS. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomcr cements and compomers. J Dent Res 1999;78:724 https://doi.org/10.1177/00220345990780030101
  12. Reynolds I. A review of direct orthodontic bonding. Br J Orthod 1975;2:171-8 https://doi.org/10.1080/0301228X.1975.11743666
  13. Retief DH. Failure at the dental adhesive-etched enamel interface. J Oral Rehabil 1974;1:265-84 https://doi.org/10.1111/j.1365-2842.1974.tb01438.x
  14. Diedrich P. Enamel alterations from bracket bonding and debonding: a study with the scanning electron microscope. Am J Orthod 1981;79:500-22 https://doi.org/10.1016/S0002-9416(81)90462-0
  15. Pettemerides AP, Ireland AJ, Sherriff M. An ex vivo investigation into the use of a plasma arc lamp when using a visible light-cured composite and a resin-modified glass poly(alkenoate) cement in orthodontic bonding. J Orthod 2001;28:237-44 https://doi.org/10.1093/ortho/28.3.237
  16. Sfondrini MF, Cacciafesta V, Pistorio A, Sfondrini G. Effects of conventional and high-intensity light-curing on enamel shear bond strength of composite resin and resin-modified glass-ionomer. Am J Orthod Dentofacial Orthop 2001;119:30-5 https://doi.org/10.1067/mod.2001.111399
  17. Evans LJ, Peters C, Flickinger C, Taloumis L, Dunn W. A comparison of shear bond strengths of orthodontic brackets using various light sources, light guides, and cure times, Am J Orthod Dentofacial Orthop 2002;121:510-5 https://doi.org/10.1067/mod.2002.121558
  18. Munksgaard EC, Peutzfeldt A, Asmussen E. Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light. Eur J Oral Sci 2000;108:341-5 https://doi.org/10.1034/j.1600-0722.2000.108004341.x
  19. Wang WN, Meng CL. A study of bond strength between light- and self-cured orthodontic resin. Am J Orthod Dentofacial Orthop 1992;101:350-4 https://doi.org/10.1016/S0889-5406(05)80328-2
  20. Bishara SE, Olsen ME, Damon P, Jakobsen JR. Evaluation of a new light-cured orthodontic bonding adhesive. Am J Orthod Dentofacial Orthop 1998;114:80-7 https://doi.org/10.1016/S0889-5406(98)70242-2
  21. Bishara SE, Ajlouni R, Oonsombat C. Evaluation of a new curing light on the shear bond strength of orthodontic brackets. Angle Orthod 2003;73:431-5
  22. Micali B, Basting RT. Effectiveness of composite resin polymerization using light-emitting diodes (LEDs) or halogen-based light-curing units. Pesqui Odontol Bras 2004;18:266-70 https://doi.org/10.1590/S1806-83242004000300016
  23. Rahiotis C, Kakaboura A, Loukidis M, Vougiouklakis G. Curing efficiency of various types of light-curing units. Eur J Oral Sci 2004;112:89-94 https://doi.org/10.1111/j.0909-8836.2004.00092.x
  24. Vandewalle KS, Roberts HW, Tiba A, Charlton DG. Thermal emission and curing efficiency of LED and halogen curing lights. Oper Dent 2005;30:257-64
  25. Swanson T, Dunn WJ, Childers DE, Taloumis LJ, Shear bond strength of orthodontic brackets bonded with light-emitting diode curing units at various polymerization times. Am J Orthod Dentofacial Orthop 2004;125:337-41 https://doi.org/10.1016/j.ajodo.2003.04.011
  26. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965;19:515-30 https://doi.org/10.1016/0030-4220(65)90015-0
  27. Pohto M, Scheinin A. Vital microscopy of the pulp in the rat incisor. VII. Reactions to silicate cements. Suom Hammaslaak Toim 1967;63:178-86
  28. Cobb DS, Dederich DN, Gardner TV. In vitro temperature change at the dentin/pulpal interface by using conventional visible light versus argon laser. Lasers Surg Med 2000:26:386-97 https://doi.org/10.1002/(SICI)1096-9101(2000)26:4<386::AID-LSM7>3.0.CO;2-C
  29. Klocke A, Korbmacher HM, Huck LG, Kahl-Nieke B. Plasma arc curing lights for orthodontic bonding. Am J Orthod Dentofacial Orthop 2002:122:643-8 https://doi.org/10.1067/mod.2002.126897
  30. Klocke A, Korbmacher HM, Huck LG, Ghosh J, Kahl-Nieke B. Plasma arc curing of ceramic brackets: an evaluation of shear bond strength and debonding characteristics. Am J Orthod Dentofacial Orthop 2003:124:309-15 https://doi.org/10.1016/S0889-5406(03)00310-X
  31. Hasegawa T, Itoh K, Yukitani W, Wakumoto S, Hisamitsu H. Depth of cure and marginal adaptation to dentin of xenon lamp polymerized resin composites. Oper Dent 2001:26:585-90
  32. Artun J, Bergland S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 1984:85:333-40 https://doi.org/10.1016/0002-9416(84)90190-8
  33. O'Brien KD, Watts DC, Read MJ. Residual debris and bond strength: is there a relationship? Am J Orthod Dentofacial Orthop 1988:94:222-30 https://doi.org/10.1016/0889-5406(88)90031-5
  34. Oliver RG. The effect of different methods of bracket removal on the amount of residual adhesive. Am J Orthod Dentofacial Orthop 1988:93:196-200 https://doi.org/10.1016/S0889-5406(88)80003-9
  35. Sinha PK, Nanda RS, Duncanson MG, Hosier MJ. Bond strengths and remnant adhesive resin on debonding for orthodontic bonding techniques. Am J Orthod Dentofacial Orthop 1995;108:302-7 https://doi.org/10.1016/S0889-5406(95)70025-0
  36. Winchester L. Methods of debonding ceramic brackets. Br J Orthod 1992:19:233-7 https://doi.org/10.1179/bjo.19.3.233