Bond strength of fiber reinforced composite after repair

섬유 강화 컴포지트의 수리 후 접합 강도

  • Kim, Min-Jung (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Kyung-Ho (Department of Orthodontics, College of Dentistry, Yonsei University, Yong-Dong Severance Hospital) ;
  • Choy, Kwang-Chul (Department of Orthodontics, College of Dentistry, Yonsei University, Yong-Dong Severance Hospital)
  • 김민정 (연세대학교 치과대학 교정학교실) ;
  • 김경호 (연세대학교 치과대학 교정학교실, 영동세브란스병원) ;
  • 최광철 (연세대학교 치과대학 교정학교실, 영동세브란스병원)
  • Published : 2006.06.30

Abstract

Fiber reinforced composite (FRC) is usually used as a connector joining a few teeth into one unit in orthodontics. However, fracture often occurs during the two to three years of the orthodontic treatment period due to repeated occlusal loading or water sorption in the oral environment. We simulated the repair by overlapping and attaching portions of two FRC strips in the middle and performed a three-point bending test to investigate the changes of the repair strength among the different FRC groups. The specimens were grouped according to the overlapping lengths of the two FRC strips, which were 1, 2, 3 and 4 mm (group E1, E2, E3 and E4, respectively) and the control group consisted of unrepaired, intact FRC strips. Each group consisted of 6 specimens and were cured with a light emitting diode curing unit. Group E4 showed the highest maximum loads of 2.67 N, then the control group (2.39 N), group E3 (2.35 N), E2 (2.10 N), and E1 (1.75 N) in decreasing order. Group E4 also showed the highest stiffness, which was 2.32 N/mm, however, the stiffness of group E3 (2.06N/mm) was higher than that of the control group (1.88 N/mm). According to the visual examination, the specimens tended to be bent rather than being fractured into two pieces with an increased length of overlapping portions. The above results suggest that a minimum overlapping length of 3 mm was necessary to obtain an adequate repair of a 10 mm length of FRC connector. In addition, the critical section adjacent to the joint area, where the thickness decreased abruptly, should be reinforced with flowable resin to minimize the bending tendency.

교정 치료 시 사용되는 섬유 강화 컴포지트(FRC, fiber reinforced composite)는 구강 내에서 저작압 등의 지속적인 응력과 수분 흡수 등의 이유로 파절이 일어나는 경우가 있다. 이 때 모든 FRC를 제거하지 않고 수리(repair)하는 경우에 적절한 강도를 얻기 위해 첨가해야 할 FRC의 양 및 그 파절 양상을 알아보고자 하였다. 두 개의 FRC strips를 1, 2, 3, 그리고 4mm 만큼 겹쳐(E1, E2, E3, E4군) 시편을 만드는 방법으로 수리를 재현한 후 light emitting diode 광중합기로 중합하고, 3점 굽힘 실험을 시행하여 겹침 길이와 접합 강도간의 관계에 대해 조사하였다. 최대 하중치는 E4군에서 2.67N으로 최대였고, 대조군(2.39N), E3군(2.35N), E2군(2.10N), 그리고 E1군(1.75N)의 순이었다. 강성 역시 최대 하중치와 같이 E4군(2.32 N/mm)에서 최대치를 기록하였으나, E3군(2.06N/mm)의 강성이 대조군(1.88N/mm)보다 더 큰 값을 보였다. 겹침 길이가 길수록 완전히 두 조각으로 파절되기 보다 가운데 또는 critical section 에서 굽힘 양상을 보였다. 반면 겹침 길이가 짧은 경우 두 조각으로 부러지는 파절 양상을 보였다. 이상의 실험에서 길이 10 mm인 연결자 형태의 FRC의 수리 시 적절한 강도를 얻기 위해서는 최소 3 mm의 strips를 겹쳐야 하고, 이 때 주로 나타나는 실패 양상인 굽힘을 최소화하기 위해 연결 부위에 바로 인접하여 두께가 급격하게 변하는 critical section의 보강이 필요할 것으로 사료된다.

Keywords

References

  1. Schwartz MM. Fibers and matrices. Composite materials In: Composite materials (I): properties, nondestructive testing, and repair. Princeton, NJ: Prentice Hall; 1996
  2. Issac DH. Engineering aspects of fiber reinforced composites. In: Vallittu PK editor. The first symposium on fiber reinforced plastics in dentistry, Biomaterials project. Turku, Finland: Institute of Dentistry; 1997. p. 1-21
  3. Goldberg AJ, Burstone CJ, The use of continuous fiber reinforcement in dentistry. Dent Mater 1992;8:197-202 https://doi.org/10.1016/0109-5641(92)90083-O
  4. Friskopp J, Blomlof L. Intermediate fiberglass splints. J Prosthet Dent 1984;51:334-7 https://doi.org/10.1016/0022-3913(84)90216-6
  5. Purton DG, Payne JA. Comparison of carbon fiber and stainless steel root canal posts. Quintessence Int 1996;27:93-7
  6. Drummond JL. In vitro evaluation of endodontic posts. Am J Dent 2000;13:5B-8B
  7. Rifkin LR. Maxillary reconstruction utilizing a second generation glass reinforced resin material. Pract Periodont Aesthet Dent 1998;10:2-7
  8. Vallittu PK, Lassila VP. Reinforcement of acrylic resin denture base material with metal or fibre strengtheners. J Oral Rehabil 1992;19:225-30 https://doi.org/10.1111/j.1365-2842.1992.tb01096.x
  9. Vallittu PK, Lassila VP, Lappalainen R. Transverse strength and fatigue of denture acrylic-glass fiber composite. Dent Mater 1994;10:116-21 https://doi.org/10.1016/0109-5641(94)90051-5
  10. Burstone CJ, Kuhlberg AJ. Fiber-reinforced composites in orthodontics. J Clin Orthod 2000;34:271-9
  11. Karaman AI, Kir N, Belli S. Four applications of reinforced polyethylene fiber material in orthodontic practice. Am J Orthod Dentofacial Orthop 2002;121:650-4 https://doi.org/10.1067/mod.2002.123818
  12. 김민정, 최광철, 김경호. Clinical application of FRC (fiber-reinforced composite) in orthodontics. Kor J Clin Orthod 2004;12:70-6
  13. 김민정, 이준희, 최광철, 김경호. Clinical application of FRC (fiber-reinforced composite) in orthodontics. (3) Space Closure I- 구치부에 passive anchors로서의 FRC의 사용. Kor J Clin Orthod 2004:14:68-75
  14. 김민정, 이준희, 최광철, 김경호. Clinical application of FRC (fiber-reinforced composite) in orthodontics. (4) Space Closure. II- Screw와 lever arm을 사용한 horizontal anterior retraction. Kor J Clin Orthod 2004;15:78-89
  15. Hornbrook DS, Hastings JH. Use of bondable reinforcement fiber for post and core build-up in an endodontically treated tooth: maximizing strength and aesthetics. Pract Periodont Aesthet Dent 1995;7:33-42
  16. Karna JC. A fiber composite laminate endodontic post and core. Am J Dent 1996:9:230-2
  17. Serio FG, Strassler HE. Perio-esthetic troubleshooting: solutions for the unexpected. J Esthet Dent 1997;9:317-26 https://doi.org/10.1111/j.1708-8240.1997.tb00959.x
  18. Miettinen VM, Vallittu PK. Docent DT. Water sorption and solubility of glass fiber-reinforced denture polymethyl methacrylate resin. J Prosthet Dent 1997;77:531-4 https://doi.org/10.1016/S0022-3913(97)70147-1
  19. Parr GR, Rueggeberg FA. In vitro hardness, water sorption, and resin solubility of laboratory-processed and autopolymerized long-term resilient denture liners over one year of water storage. J Prosthet Dent 2002:88:139-44 https://doi.org/10.1067/mpr.2002.127399
  20. Karmaker A, Prasad A. Effect of design parameters on the flexural properties of fiber-reinforced composites. J Mater Sci Lett 2000;19:663-5 https://doi.org/10.1023/A:1006754426314
  21. Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dent Mater 2005;21:421-8 https://doi.org/10.1016/j.dental.2004.07.007
  22. Vallittu PK, Ruyter IE, Ekstrand K. Effect of water storage on the flexural properties of E -glass and silica fiber acrylic resin composite. Int J Prosthodont 1998;11:340-50
  23. Lassila LV, Nohrstrom T, Vallittu PK. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 2002;23:2221-9 https://doi.org/10.1016/S0142-9612(01)00355-6
  24. 김석범. 물 흡수에 따른 Fiber Reinforced composite (FibreKor)의 굽힘 특성 변화. 연세 대학교 석사 논문 2004
  25. Ekstrand K, Ruyter IE, Wellendorf H. Carbon/graphite fiber reinforced poly(methyl methacrylate): properties under dry and wet conditions. J Biomed Mater Res 1987;21:1065-80 https://doi.org/10.1002/jbm.820210902
  26. Meyer MR, Friedman RJ, Del Schutte H Jr, Latour RA Jr. Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments. J Biomed Mater Res 1994:28:1221-31 https://doi.org/10.1002/jbm.820281012
  27. Vallittu PK. Effect of 180-week water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont 2000:13:334-9
  28. Pantano CG, Carman LA, Warner S. Glass fiber surface effects in silane coupling. In: Mittal KL editor. Silanes and other coupling agents. Utrecht: VSP; 1992. p. 229-40
  29. Saunders WP. Effect of fatigue upon the interfacial bond strength of repaired composite resin. J Dent 1990;18:158-62 https://doi.org/10.1016/0300-5712(90)90059-N
  30. Sperling LH. Overview of IPNs. Interpenetrating polymer networks. In: Klempner D, Sperling LH, Utracki LA editors. Advanced in chemistry series, No. 239. Washington DC American Chemical Society; 1994. p. 4-6
  31. Lastumaki TM, Kallio TT, Vallittu PK. The bond strength of light-curing composite resin to finally polymerized and aged glass fiber-reinforced composite substrate. Biomaterials. 2002;23:4533-9 https://doi.org/10.1016/S0142-9612(02)00197-7
  32. Vallittu PK, Lassila VP, Lappalainen R. Wetting the repair surface with methyl methacrylate affects the transverse strength of repaired heat-polymerized resin. J Prosthet Dent 1994;72:639-43 https://doi.org/10.1016/0022-3913(94)90297-6
  33. Vallittu PK, Ruyter IE. Swelling of poly(methyl methacrylate) resin at the repair joint. Int J Prosthdont 1997;10:254-8
  34. Chiba K, Hosoda H, Fusayama T. The addition of an adhesive composite resin to the same material: bond strength and clinical techniques. J Prosthet Dent 1989;61:669-75 https://doi.org/10.1016/S0022-3913(89)80039-3
  35. Turner CW, Meiers JC. Repair of an aged, contaminated indirect composite resin with a direct, visible-light-cured composite resin. Oper Dent 1993;18:187-94
  36. Soderholm KJ, Flexure strength of repaired dental composites. Scand J Dent Res 1986;94:364-9
  37. Mitsaki-Matsou H, Karanika-Kouma A, Papadoyiannis Y, Theodoridou- Pahine S. An in vitro study of the tensile strength of composite resins repaired with the same or another composite resin. Quintessence Int 1991;22:475-81
  38. Davies BR, Millar BJ, Wood DJ, Bubb NL. Strength of secondary cured resin composite inlay repairs. Quintessence Int 1997;28:415-8
  39. Soderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Berhgman M. Hydrolytic degradation of dental composites. J Dent Res 1984;63:1248-54 https://doi.org/10.1177/00220345840630101701
  40. Burstone CJ, Application of bioengineering to clinical orthodontics. In: Graber TM editor. Orthodontics: current principles and techniques. 3rd ed. St Louis: Mosby; 2000. p. 259-92