• Title/Summary/Keyword: Plasma Technology

Search Result 3,820, Processing Time 0.031 seconds

Effect of Overfeeding on Plasma Parameters and mRNA Expression of Genes Associated with Hepatic Lipogenesis in Geese

  • Han, Chunchun;Wang, Jiwen;Xu, Hengyong;Li, Liang;Ye, Jianqiang;Li, Jiang;Zhuo, Weihua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.590-595
    • /
    • 2008
  • The aim of our study was to research the effect of overfeeding on plasma parameters and mRNA expression of genes associated with hepatic lipogenesis in the Sichuan white goose and Landes goose. Fifty-four male Landes geese and 57 male Sichuan white geese were hatched on the same day under the same feeding conditions. After overfeeding for 14 days, (1) extrahepatic adipose tissues grew greatly in the Sichuan white geese, while more lipid accumulated in liver tissue in the Landes geese. (2) Sichuan white geese had a higher plasma concentration of triacylglycerols (TG), lipoproteins and insulin than the Landes geese. However, the Landes geese exhibited higher increase of plasma concentrations of TG, lipoproteins and insulin, with greater decrease of the diacylglycerol acyltransferase 2 (DGAT2) activity and DGAT2 mRNA level and a smller decrease of plasma glucose concentration. In addition, the mRNA level of MTP and LPL in liver was down- and up- regulated by overfeeding, respectively. (3) The correlations between the activity of LPL and the proportions of subcutaneous adipose tissue, abdominal adipose tissue, and liver weight, and the plasma concentration of VLDL were different in the two breeds. (4) The proportion of fatty liver weight was positively correlated to plasma concentrations of VLDL and TG in the overfed Sichuan white geese. Such a relationship did not exist in the Landes geese. (5) The activity of DGAT2 and its mRNA abundance in liver had significant negative correlations with the TG content in liver lipid and plasma insulin level in the Landes geese, while in the Sichuan white geese they had negative correlation (p>0.05) with TG concentration in liver lipid and had significant positive correlation with VLDL and TG concentrations in plasma.

Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균)

  • Lee, Seung Je;Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • This study aimed to explore the potential for food-industry application of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganism. The effects of the key parameters such as power, oxygen ratio, exposure time and distance on Escherichia coli KCCM 21052 sterilization by the atmospheric pressure DBD plasma treatment were investigated. The experimental results revealed that increasing the power, exposure time or oxygen ratio and decreasing the exposure distance led to an improvement in the sterilization efficiency of E. coli. Furthermore, the atmospheric pressure DBD plasma (1.0 kW power, 1.0% (v/v) $O_2$, 5 min exposure time and 20 mm exposure distance) treatment was very effective for the sterilization of food-borne pathogenic bacteria. The sterilization rate of E. coli, Bacillus cereus KCCM 40935, Bacillus subtilis KCCM 12027, Bacillus thuringiensis KCCM 11429 and Bacillus atrophaeus KCCM 11314 were 72.3%, 74.6%, 88.5%, 84.7% and 91.3%, respectively.

Comparative simulation of microwave probes for plasma density measurement and its application

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Yeong-Seok;Yeom, Hui-Jung;Lee, Ba-Da;Kim, Jeong-Hyeong;O, Wang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi;Lee, Young Yoon;Kim, Young Soo;Balaraju, Kotnala;Mok, Young Sun;Yoo, Suk Jae;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.519-526
    • /
    • 2021
  • Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

Measurement of the ICRH antenna phasing using antenna strap probe based diagnostic system in EAST tokamak

  • Liu, L.N.;Liang, Q.C.;Yang, H.;Zhang, X.J.;Yuan, S.;Mao, Y.Z.;Zhang, W.;Zhu, G.H.;Wang, L.;Qin, C.M.;Zhao, Y.P.;Cheng, Y.;Zhang, K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3614-3619
    • /
    • 2022
  • To operate the ion cyclotron resonance heating (ICRH) antennas in a better heating state and produce relatively low impurities, it is necessary to control the antenna spectrum by changing the antenna phasing. As the electrical length of the antenna feeding transmission lines is changing as a matter of the standing wave pattern at the ceramic supports, 90° elbows, T-connectors and antenna loops, we chose to measure the current at the grounding points of the antenna loops by antenna strap probe. The voltage drops along a small, several millimeter-long paths at the end of the antenna loops give a signal that is proportional to the current in the antenna loop. Through the simulation of the antenna strap probe and the actual measurement of the antenna phasing under vacuum conditions, the reliability of the antenna strap probe based diagnostic system have been successfully proved. Moreover, this system was successfully applied to the ICRH daily experiments in the spring of 2021. In the near future, the active real-time feedback control of the antenna phasing system will be developed based on this diagnostic system in the EAST tokamak.

The Low Temperature Deposition of CrN Films by the AIP Method (아크 이온플레이팅법에 의한 저온 CrN 합성)

  • Cho, Yong K.;Kim, Sang K.;Lee, Won B.;Kim, Sung W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.78-83
    • /
    • 2007
  • CrN coatings were deposited by cathodic arc ion plating method on the SKD11 steel substrates. Atmosphere temperature of $350^{\circ}C$, arc current of 90 A, nitrogen partial pressure of 1.0-5.3 Pa, and negative bias voltage of 30-135 V were selected. The characteristics of microstructure were investigated with XRD. Hardness, adhesion and friction coefficient measured by microhardness tester, scratch tester, and ball on disk tribometer. Microstructures depended on nitrogen partial pressure and bias voltage. The preferred orientation of the films was changed from (200) to (111) with decreasing pressure and increasing bias voltage. Adhesion properties related with microstructure, but microstructure changes slightly influenced on hardness and friction properties. The critical load.($Lc_1$) and hardness of CrN films deposited at 5.3 Pa, -30 V condition were 55 N(HF1), $2157{\pm}47\;Hk_{0.025}$. The friction coefficient were about 0.5 under dry condition.

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Analysis of Plasma Effects on Seed Germination and Plant Growth

  • Kim, Taesoo;Park, Daehun;Park, Gyungsoon;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.1-253.1
    • /
    • 2014
  • Plasma technology has been widely used for decontamination, differentiation, and disease treatment. Recently, studies show that plasma has effects on increasing seed germination and plant growth. In spite of increasing number of studies about plasma effects, the interaction between plasma and plants has been rarely informed. In this study, we have analyzed the effects of nonthermal atmospheric pressure plasma on seed germination and growth of coriander (Coriandum sativum), a medicinal plant. We used to Ar, air, and N2 plasma on seed as feeding gases. Plasma was discharged at 0.62 kV, 200 mA, 9.2 W. Seed germination was increased over time when treated with N2 based DBD plasma for exposure times of 30 seconds and 1 minute, everyday. After 7 days, about 80~100% of seeds were germinated in the treatment with N2 based DBD plasma, compared to control (about 40%, only gas treated seeds). In order to elucidate the mechanism of increased germination, we have analyzed characteristics of changes in plant hormones and seed surface structure by SEM.

  • PDF