DOI QR코드

DOI QR Code

Measurement of the ICRH antenna phasing using antenna strap probe based diagnostic system in EAST tokamak

  • Liu, L.N. (College of Physics and Optoelectronic Engineering, Shenzhen University) ;
  • Liang, Q.C. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Yang, H. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Zhang, X.J. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Yuan, S. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Mao, Y.Z. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Zhang, W. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Zhu, G.H. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Wang, L. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Qin, C.M. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Zhao, Y.P. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Cheng, Y. (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Zhang, K. (Institute of Plasma Physics, Chinese Academy of Sciences)
  • Received : 2022.02.11
  • Accepted : 2022.05.29
  • Published : 2022.10.25

Abstract

To operate the ion cyclotron resonance heating (ICRH) antennas in a better heating state and produce relatively low impurities, it is necessary to control the antenna spectrum by changing the antenna phasing. As the electrical length of the antenna feeding transmission lines is changing as a matter of the standing wave pattern at the ceramic supports, 90° elbows, T-connectors and antenna loops, we chose to measure the current at the grounding points of the antenna loops by antenna strap probe. The voltage drops along a small, several millimeter-long paths at the end of the antenna loops give a signal that is proportional to the current in the antenna loop. Through the simulation of the antenna strap probe and the actual measurement of the antenna phasing under vacuum conditions, the reliability of the antenna strap probe based diagnostic system have been successfully proved. Moreover, this system was successfully applied to the ICRH daily experiments in the spring of 2021. In the near future, the active real-time feedback control of the antenna phasing system will be developed based on this diagnostic system in the EAST tokamak.

Keywords

Acknowledgement

The authors wish to thank the technical staff of the EAST group at the Institute of Plasma Physics, China and Shenzhen Clean Energy Research Institute, China for their helpful support during this work. This work is supported by the China Postdoctoral Science Foundation under Grant No. 2021M692202, National Natural Science Foundation of China under Grant Nos. 12105184, 11975265, 12175273 and 11675213, the National Key Research and Development Program of China under Grant Nos. 2019YFE03070000 and 2019YFE03070003, and Comprehensive Research Facility for Fusion Technology Program of China under Contract No. 2018-000052-73-01-001228.

References

  1. B. Wan, J.G. Li, H.Y. Guo, Y.F. Liang, G.S. Xu, X.Z. Gong, E.T.I. Collaborators, Nucl. Fusion 53 (2013) 104006. https://doi.org/10.1088/0029-5515/53/10/104006
  2. X.J. Zhang, C.M. Qin, L.N. Liu, AIP Conf. Proc. 2260 (2020), 030004.
  3. J.H. Wang, G. Chen, Y.P. Zhao, Y.Z. Mao, S. Yuan, X.J. Zhang, H. Yang, C.M. Qin, Y. Cheng, Y.Q. Yang, G. Urbanczyk, L.A. Liu, J. Cheng, Plasma Sci. Technol. 20 (2018), 045603.
  4. G. Chen, Y.Z. Mao, Y.P. Zhao, S. yuan, X.J. Zhang, C.M. Qin, Fusion Eng. Des. 107 (2016) 32-37. https://doi.org/10.1016/j.fusengdes.2016.04.010
  5. D. Du, X.Y. Gong, L. Yin, D. Xiang, J.C. Li, Plasma Sci. Technol. 17 (2015) 1078-1082. https://doi.org/10.1088/1009-0630/17/12/17
  6. L.N. Liu, X.J. Zhang, Y.B. Zhu, C. Qin, Y. Zhan, Y.Z. Mao, S. Yuan, J.H. Wang, Rev. Sci. Instrum. 90 (2019), 063504. https://doi.org/10.1063/1.5089537
  7. X.J. Zhang, H. Yang, C.M. Qin, S. Yuan, Y.P. Zhao, Y.S. Wang, L.N. Liu, Nucl. Fusion (2022) 105087.
  8. M. Bures, J. Jacquinot, M. Stamp, D.D.R. Summers, D.F.H. Start, T. Wade, D.A. Dippolito, J.R. Myra, Nucl. Fusion 32 (1992) 1139-1145. https://doi.org/10.1088/0029-5515/32/7/I05
  9. D. D'Ippolito, J. Myra, P. Ryan, E. Righi, J. Heikkinen, P. Lamalle, J. Noterdaeme, Nucl. Fusion 42 (2002) 1357-1365. https://doi.org/10.1088/0029-5515/42/12/302
  10. E. Lerche, V. Bobkov, P. Jacquet, M.L. Mayoral, A. Messiaen, I. Monakhov, J. Ongena, G. Telesca, D.V. Eester, R. Weynants, AIP Conf. Proc. 1187 (2009) 93.
  11. A. Czarnecka, F. Durodie, A. Figueiredo, K.D. Lawson, E. Lerche, M. Mayoral, J. Ongena, D.V. Eester, K. Zastrow, V. Bobkov, I. Coffey, L. Colas, P. Jacquet, I. Monakhov, Plasma Phys. Contr. Fusion 54 (2012) 7.
  12. V. Maquet, A. Messiaen, J. Plasma Phys. 86 (2020) 6. https://doi.org/10.1017/S0022377820001415
  13. C.C. Petty, F. Baity, J. deGrassie, T. Mau, R. Pinsker, M. Porkolab, R. Prater, Plasma Phys. Contr. Fusion 43 (2001) 1747-1758.
  14. R. Bilato, A. Brambilla, I. Pavlenko, E. Meo, Nucl. Fusion 42 (2002) 1085-1093. https://doi.org/10.1088/0029-5515/42/9/306
  15. Y. Peysson, J. Decker, Fusion Sci. Technol. 65 (2014) 22-42.
  16. Y. Kazakov, D.V. Eester, T. Wauters, E. Lerche, J. Ongena, Plasma Phys. Contr. Fusion 57 (2015), 025014.
  17. H. Faugel, V. Bobkov, F. Braun, T. Franke, D. Hartmann, M. Kircher, J.-M. Noterdaeme, Fusion Eng. Des. 86 (2011) 996e999.
  18. R. Ochoukov, V. Bobkov, H. Faugel, H. Funfgelder, J. Jacquot, J. Noterdaeme, G.S. Lopez, Rev. Sci. Instrum. 87 (2016) 11.
  19. Data sheet for RF/IF gain and phase detector, analog devices, series AD8302: http://www.analog.com/media/cn/technical-documentation/data-sheets/AD8302.pdf.