• Title/Summary/Keyword: Plasma Technology

Search Result 3,820, Processing Time 0.03 seconds

Changes of Chemical Concentrations during Pulsed Plasma Process of Silane (실란 펄스 플라즈마 공정에서의 화학농도 변화)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.141-149
    • /
    • 2005
  • We investigated numerically the evolutions of several chemical species which are important for film growth and particle generation in the pulsed $SiH_4$ plasmas. During the plasma-on, the $SiH_x$ concentration increases with time mainly by the generation reaction from $SiH_4$, but, during the plasma-off, decreases because of the hydrogen adsorption reaction. During the plasma-on, the concentrations of negative ions increase with time by the polymerization reactions of negative ions and those become almost zero in the sheath regions because of the electrostatic repulsion. During the plasma-off, the concentrations of negative ions decrease with time by the neutralization reactions with positive ions and some negative ions can diffuse toward the sheath regions because there is no electric field inside the reactor. The polymerized negative ions of higher mass can be reduced successfully by using the pulsed plasma process.

  • PDF

The Effect of Plasma Power on the Composition and Microhardness of a-SiC:H Films Grown by PECVD

  • Lee, Young-Ku-K;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.123-123
    • /
    • 1999
  • Amorphous hydrogenated silicon carbide (a-SiC:H) films were deposited at the temperature of 40$0^{\circ}C$ using plasma enhanced chemical vapor deposition. The a-SiC:H films were characterized by x-ray photoelectron spectroscopy (XPS) and nanoindentation method. By increasing the plasma power from 20W to 160W, the oxygen content of the a-SiC:H films were observed to decrease from 12.1% to 4.4%. On the other hand, the plasma power did not affect the ratio of carbon to silicon in our experiment where the 1, 3-disilabutane was used as the precursor. Microhardness of the films was observed to increase as the plasma power increased, while the elastic modulus was observed to gave a maximum value at the plasma power of 80W. Microhardness of the film is thought to be strongly affected by the content of adventitious oxygen in the film and it is concluded that the hardness of the film can be improved by increasing the plasma power.

  • PDF

Improved Dit between ALD HfAlO Dielectric and InGaAs Substrate Using NH3 Plasma Passivation (InGaAs 위의 NH3 Plasma Passivation을 이용한 ALD HfAlO유전체 계면전하(Dit) 향상)

  • Choi, Jae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • The effect of $NH_3$ plasma passivation on the chemical and electrical characteristics of ALD HfAlO dielectric on the InGaAs substrate was investigated. The results show that $NH_3$ plasma passivation exhibit better electrical & chemical performance such as much lower leakage current, lower density of interface trap(Dit) level, and low unstable interfacial oxide. $NH_3$ plasma passivation can effectively enhance interfacial characteristics. Therefore $NH_3$ plasma passivation improved the HfAlO dielectric performance on the InGaAs substrate.

Study on resonant electron cyclotron heating by OSXB double mode conversion at the W7-X stellarator

  • Adlparvar, S.;Miraboutalebi, S.;Kiai, S.M. Sadat;Rajaee, L.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1106-1111
    • /
    • 2018
  • Electromagnetic waves potentially have been used to heat overdense nuclear fusion plasmas through a double mode conversion from ordinary to slow extraordinary and finally to Electron Bernstein Wave (EBW) modes, OSXB. This scheme is efficient and has not any plasma density limit of electron cyclotron resonance heating due to cut-off layer. The efficiency of conversion depends on the isotropic launching angles of the microwaves with the plasma parameters. In this article, a two-step mode conversions of OSXB power transmission efficiency affected by the fast extraordinary (FX) loses at upper hybrid frequency are studied. In addition, the kinetic (hot) dispersion relation of a overdense plasma in a full wave analysis of a OSXB in Wendelstein 7X (W7-X) stellarator plasma has been numerically simulated. The influence of plasma dependent parameters such as finite Larmor radius, electron thermal velocity and electron cyclotron frequency are represented.

Analysis of First Wafer Effect for Si Etch Rate with Plasma Information Based Virtual Metrology (플라즈마 정보인자 기반 가상계측을 통한 Si 식각률의 첫 장 효과 분석)

  • Ryu, Sangwon;Kwon, Ji-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.146-150
    • /
    • 2021
  • Plasma information based virtual metrology (PI-VM) that predicts wafer-to-wafer etch rate variation after wet cleaning of plasma facing parts was developed. As input parameters, plasma information (PI) variables such as electron temperature, fluorine density and hydrogen density were extracted from optical emission spectroscopy (OES) data for etch plasma. The PI-VM model was trained by stepwise variable selection method and multi-linear regression method. The expected etch rate by PI-VM showed high correlation coefficient with measured etch rate from SEM image analysis. The PI-VM model revealed that the root cause of etch rate variation after the wet cleaning was desorption of hydrogen from the cleaned parts as hydrogen combined with fluorine and decreased etchant density and etch rate.

2D Kinetic Simulation of Partially Magnetized Capacitively Coupled Plasma Sources (2차원 동역학 시뮬레이션을 활용한 부분적으로 자화된 용량성 결합 플라즈마 전산 모사)

  • Sung Hyun Son;Junbeom Park;Kyoung-Jae Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.118-123
    • /
    • 2023
  • Partially magnetized capacitively coupled plasma (CCP) sources are investigated using a two-dimensional kinetic simulation code named EDIPIC-2D. A converging numerical solution was obtained for CCP with a 60 MHz power source, while properly capturing the dynamics of electrons and power absorption over a single RF period. The effects of magnetic fields with different orientations were evaluated. Axial magnetic fields caused changes in the spatial distribution of plasma density, affecting the loss channel. Transverse magnetic fields enhanced stochastic heating near the powered electrode, leading to an increase in plasma density while the significant E×B drift loss compensated for this rise.

  • PDF

Effects of Chronic Chitosan Salt Supplementation on Blood Pressure, Plasma Component, and Lipid Profile in Healthy Male and Female Adults

  • Kim, Hag-Lyeol;Son, Yeon-Hee;Kim, Seon-Jae;Kim, Du-Woon;Ma, Seung-Jin;Cho, Geon-Sik;Kim, In-Cheol;Ham, Kyung-Sik
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.249-254
    • /
    • 2007
  • The effects of chronic chitosan salt supplementation on the systolic (SBP) and diastolic blood pressure (DBP), and physiological parameters were investigated in healthy male and female adult. Chitosan salt was conducted by measuring various health-related factors such as body composition, plasma $Na^+$, $Cl^-$, lipid, and lipoproteins profiles, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activity. Chitosan salt supplementation no significant differences before and after supplement in body composition variables and in SBP and DBP in either male or female. Plasma sodium and chlorine concentration no significant changes during chitosan salt supplementation, and no significant difference between two genders. Plasma GOT and GPT activity no different before and after supplement in either male or female. GOT activity significantly higher for male before supplement (p<0.05), and 2 weeks after supplement (p<0.01). The lipid and lipoproteins profiles of plasma no significant changes during chitosan salt supplementation in either male or female subjects. In summary, the chronic intake of chitosan salt did not affect the SBP or DBP, and posed no health risks.

Characteristics of the Contact Angle Using the Microwave Plasma Treatment on Scintillator Panel Substrates (마이크로웨이브 플라즈마 처리를 통한 섬광체 패널 기판의 접촉가 특성변화)

  • Kim, Byoungwook;Kim, Youngju;Ryu, Cheolwoo;Choi, Byoungjung;Kwon, Youngman;Lee, Youngchoon;Kim, Myungsoo;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • By measuring decrease change of the contact angle after microwave plasma treatment on the glass and Al as a scintillator panel sample substrate, the adhesive performance of scintillator panel can be expected to improve. Also resolution and sensitivity of scintillator panel after microwave plasma treatment can be expected to maintain highly.