• Title/Summary/Keyword: Plant flower

Search Result 1,293, Processing Time 0.029 seconds

The Effects of High Air Temperature and Waterlogging on the Growth and Physiological Responses of Hot Pepper (고온 및 침수에 의한 고추의 생육 및 생리적 반응에 미치는 영향)

  • Lee, Hee Ju;Park, Sung Tae;Kim, Sung Kyeom;Choi, Chang Sun;Lee, Sang Gyu
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study was conducted to investigate the effects of waterlogging on the net photosynthetic rate, root activity and fruit yield of hot pepper. Plants were grown in two greenhouses: extractor fans and side ventilators began to operate when the inside temperature reached $25^{\circ}C$ in one greenhouse and $35^{\circ}C$ in the other. Waterlogging treatments were performed 54 days after transplanting (when fruit setting at the second flower truss was complete). The plot in each greenhouse was divided into five sections, and each section was watered for 0, 12, 24, 48 or 72 h using drip irrigation. Plants under $25^{\circ}C$ and non - waterlogging treatment exhibited in the greatest growth among treatments. Plant growth generally decreased as the waterlogging period increased. The net photosynthetic rate was highest under non - waterlogging and $25^{\circ}C$ treatment and lowest under 72 h waterlogging and $25^{\circ}C$ treatment. The root activity decreased as the waterlogging period increased, except for plants under 72 h waterlogging treatment at $35^{\circ}C$. The number and weight of red pepper fruits per plant were highest under non - waterlogging treatment at $35^{\circ}C$. The greatest fruit yield was also observed under non - waterlogging treatment at $35^{\circ}C$, with production reaching 3,697 kg / 10a. At the appropriate temperature for hot pepper ($25^{\circ}C$), yields were reduced by 25 - 30% under 12, 24 and 48 h waterlogging treatment compared to non - waterlogging treatment. These results indicate that longer waterlogging periods reduce the growth, net photosynthetic rate, root activity and yields of hot pepper. However, the net photosynthetic rate and stomatal conductance of hot pepper plants grown under 72 h waterlogging treatment recovered nine days after growth under normal growth conditions.

Impact of Elevating Temperature Based on Climate Change Scenarios on Growth and Fruit Quality of Red Pepper (Capsicum annuum L.) (기후변화 시나리오에 근거한 온도상승이 고추의 생육양상 및 과실특성에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Son, In Chang;Wi, Seung Hwan;Kim, Chun Hwan;Lim, Chan Kyu;Oh, Soonja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.248-253
    • /
    • 2015
  • This study was conducted to determine the impact of temperature elevated based on climate change scenario on growth and fruit quality of red pepper (Capsicum annuum L.) in walk-in plant growth chambers. The intraday temperatures of climate normal years (IT) were determined using intraday mean temperatures of climatic normal years (1971~2000) in the Andong Province during the growing season (May 1~July 30). Red pepper plants were cultivated under different temperatures (starting at IT rise by up to $6^{\circ}C$, $2^{\circ}C$ increment). Plant height, stem diameter, branch number, leaf number, fresh weight and dry weight increased under the temperatures higher than IT. The number of flower was the greatest under IT+$2^{\circ}C$ (mean temperature at $22.8^{\circ}C$). The total number and the weight of fruits were the highest under IT+$2^{\circ}C$. While the fruit weight, fruit length and fruit diameter decreased more than IT+$2^{\circ}C$ as the temperature increased gradually. These results concluded that in condition that the current diurnal temperature change cycle is maintained in Andong area, in accordance with climate change scenarios, when the temperature rise $2^{\circ}C$ higher than intraday temperature of Andong area the quantity of pepper fruits will increase while maintaining quality, but increases more than that degree yields are expected to decrease significantly. This result suggests that the fruit yield could increase under IT+$2^{\circ}C$ and fruit quality could maintain great, but the fruit yield could decrease under the temperatures higher than IT+$2^{\circ}C$.

Study on the Rice Yield Reduction and Over head Flooding Depth for Design of Drainage System (배수 설계를 위한 벼의 관수심 및 관수피해율에 관한 연구)

  • 김천환;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.69-79
    • /
    • 1982
  • The objective of this study is to contribute to drainage planning in the most realistic and economical way by establishing the relationship between rice yield reduction and overhead flooding by muddy water of each growth stage of paddy, which is the most important factor in determining optimum drainage facilities. This study was based on the data mainly from the experimental reports of the Office of Rural Development of Korea, Reduction Rate Estimation for Summer Crops, published by Ministry of Agriculture and Forestry of Japan and other related research documenta- tion. The results of this study are summarized as follows 1. Damages by overhead flooding are highest in heading stage and have the tendency of decrease in the order of booting stage, panicle formation stage, tillering stage, and stage just after transplanting. Damages by overhead flooding of each growing stage are as follows: a) It is considered that overhead flooding just after transplanting gives a little influence on plant growth and yield because the paddy has sufficient growth period from floo ding to harvest time. b) Jt is analyzed that according to the equation y=11 12x 0.908 which is derived from this study, damages by overhead flooding during tillering stage for 1, 2, 3 successive days are 11.1 %, 20.9%, and 30.2% respectively. c) Damages by overhead flooding after panicle formation stage are very serious because recovering period is very short after damage and ineffective tillering is much. Acc- ording to the equation y=9. 58x+10. Ol derived from this study, damages by overhead flooding fal 1,2,3,5 successive days are 19.6%, 29.2%, 38.8%, 57.9% respectively. d) Booting stage is the very important period in which young panicle has grown up almost completely and the number of glumous flower is fixed since reduction division takes place in the microspore mother cell and enbryo mother cell. According to the equation y=39. 66x 0.558 derived from this study, damages by overhead floodingfor 0.5, 1, 3, 5 successive days are 26.9%, 39.7%, 72. 2% and 97.4%, respectively. Therefore, damages by overhead flooding is very serious during the hooting stage. e) When ear of paddy emerges, flowering begins on that day or the next day; when paddy flowers, fertilization will be completed 2-3 hours after flowering. Therefore overhead flooding during heading stage impedes flowering and increases sterilizing percentage. From this reason damages of heading stage are larger than that of booting stage. According to the equation y-41 94x 0.589 derived from this study, damages by overhead flooding for 0.5, 1, 3, 5, successive days are 27.9%, 63.1 %, 80.1%, and 100% 2. Considering that temperature of booting stage is higher than that of beading stage and plant height of booting stage is ten centimeters shorter than that of heading stage, booting stage should be taken as a critical period for drainage planning because possi- bility of damage occurrence in booting stage is larger than that of heading stage. There-fore, it is considered that booting stage should be taken as critical period of paddy growth for drainage planning. 3. Overhead flooding depth is different depending on the stage of growth. In case, booting stage is adopted as design stage of growth for drainage planning, it is conside red that the allowable flooding depth for new varieties and general varieties are 70cm and 80cm respectively. 4. Reduction Rate Estimation by Wind and Flood for Rice Planting of the present design criteria for drainage planning shows damage by overhead flooding for 1 to 2, 3 to 4, 5 to 7 consecutive days; damages by overhead flooding varies considerably over several hours and experimental condition of soil, variety of paddy, and climate differs with real situation. From these reasons, damage by flooding could not be estimated properly in the past. This study has derived the equation which shows damages by flooding of each growth stage on an hourly basis. Therefore, it has become possible to compute the exact damages in case duration of overhead flooding is known.

  • PDF

Correlation Model between Growth Characteristics and Soil Factors of Tulipa edulis Habitat (산자고 자생지의 생육특성 및 토양요인간 상관모형)

  • You Ju-Han;Jung Sung-Gwan;Lee Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.180-188
    • /
    • 2006
  • This study was carried out to offer the raw data on the method of cultivation and ecological characteristic by systematical analysing habitat environment of Tulipa edulis that was expected as medicinal and ornamental resource. The habitat environment was that the altitude was 245 m, the aspect of south, the size of approximately $49\;m^2$, and there was analyzed that Tulipa edulis grew wild in the dryly sunny spot. The vascular plants were summarized as 62 taxa; 28 families, 59 genera, 50 species, 11 varieties and 1 forms, and the resource plants were classified that there were 23 taxa of ornamental plants(37.1%), 43 taxa of edible plants(69.4%), 34 taxa of medicinal plants(54.8%) and 29 taxa of others(46.8%). In the results of soil factors analysis, there showed that acidity was pH 4.9, organic matter content of 4.9%, available $P_{2}O_{5}$ of 3.6 mg/kg, exchangeable $K^+$ of $0.5\;cmol^{+}/kg$, exchangeable $Ca^{2+}$ of $3.0\;cmol^{+}/kg$, exchangeable $Mg^{2+}$ of $0.8\;cmol^{+}/kg$, cation exchange capacity(C.E.C) of $12.3\;cmol^{+}/kg$ and electrical conductivity(EC) of 0.3 dS/m. In the results of correlation analysis between soil factors, exchangeable $Ca^{2+}$ and C.E.C were highly correlative. The growth characteristics of Tulipa edulis were surveyed that height was 7.6 cm, leaf width of 0.6 cm, leaf length of 12.7 cm, flower width of 2.8 cm, peduncle of 5.4 cm and chlorophyll of $34.7\;{\mu}g\;mg^{-1}$. In the results of correlation analysis between growth characteristics, height and peduncle were highly correlative. In the results of correlation analysis between soil factors and growth characteristics, exchangeable $K^{+}$ and leaf length were high relativity but they were confirmed negative relation. In the results of growth model analysis, R-square of leaf width and exchangeable $K^{+}$ was some 86.4% and that of chlorophyll and exchangeable $K^{+}$ was some 83.7%.

Influence of Seeding Date on Flowering and Yields of Introduced Mungbean Cultivars (Vigna radiata L.) (파종기(播鍾期)의 차이(差異)가 도입(導入)된 녹두품종(綠豆品鍾)의 개화(開花) 및 수량(收量)에 미치는 영향(影響))

  • Kim, Yong-Rae;Pyon, Jong-Yeong;Shin, Hey-Suck
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.51-60
    • /
    • 1977
  • In order to determine ecological variations of flowering date and yields under the different seasonal cultures, and to select the higher yielding varieties which were adaptable to Korean climate, 100 mungbean cultivars were sown at the interval of 15 days from April 22 to July 21 in 1976. The results obtained are summarized as follows: 1. The number of days required to flowering from seeding were decreased by delaying the seeding date. 2. When accumulated temperature at first flowering from seeding were reached $945-1,126^{\circ}C$, the mungbean cultivars started to flower regardless of seeding dates. Especially, when mungbean was planted around standard planting date, the plants flowered for very short duration. 3. There were highly significant correlations between the number of days from seeding to flowering at each seeding date and standard planting date. 4. Yields per plant were tend to decrease with the delay of seeding date but there were no significant difference between seeding dates. Therefore, it appears that mungbean can be planted for longer period of time compared to other crops such as rice and soybean. 5. Highly significant correlations were found between the number of days of first flowering and yields per plant at most seeding dates. 6. It may be feasible to grow high yielding mungbean cultivars such as CES 140, LM 2100, LM 690, L 576 and LM 689 after harvesting of spring vegetables in May and before planting of fall vegetables.

  • PDF

Simple Method to Discriminate the Fungicide Resistant Botrytis cinerea Strain in Tomatoes (토마토 잿빛곰팡이병균 약제저항성 간이 판별법)

  • Lee, Mun Haeng;Lee, Hee Kyoung;Kim, Sung Eun;Lee, Hwan Gu;Lee, Sun Gye;Yu, Seung Hun;Kim, Young Shik;Kim, Sang Woo;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Grey mold infection rate in tomato was investigated with the inoculation of dead flowers on Botrytis selective media. The grey mold infection rate of flower after fruiting were higher in the order of after 45 days, after 25 days, and fruiting day with 100%, 87% and 65%, respectively. The number of infected flowers were increased with time increase after the flowering before fruiting. BSM (Botrytis selective medium) was used to check grey mold infection rate depending on the flowering stage and cultivar. Grey mold infection rate depending on the flowering stage was similar in all the beef-tomato cultivar as 1.5~5% at preflowering, 1.5~45% at flowering and 75~90% at fruiting. On the other hand, cherry tomato cultivar "KoKo" had lower infection rates of 0~3.5% at pre-flowering, 10~30% at flowering and 20~50% at fruiting. These resulted from the fact that beaf-tomato cultivar have much bigger flowers and larger amount of pollens compared to those of cherry tomato cultivar. The amounts of falling pollens of Botrytis spp. were checked for beaf-tomato cultivar and cherry tomato cultivar using BSTM. The amounts of falling pollens were increased as growth period was extended, and the amount of spores increased rapidly during the outbreak of grey mold. Twelve field trials in Buyeo and Iksan areas showed that Fluazinam, and Diethofencarb+Carbendazim were effective fungicides to control tomato grey mold, and these results were similar to those of field trials with BSTM. This is the first report of Fluazinam as a effective fungicide for the control of grey mold of tomato even though it has not been registered yet for the control of gray mold in tomato.

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Effect of Application Rate of a Controlled Release Fertilizer on the Changes in Medium EC and Growth of Subirrigated Vinca and Salvia (저면관수 재배에서 완효성 비료의 양이 배지의 EC 및 일일초와 살비아의 생장에 미치는 영향)

  • Kang, Jong Goo;Lee, In Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Plug seedlings of vinca (Catharanthus roseus L. 'Pacifica Punch') and salvia (Salvia splendens F. Sellow ex Roem & Schult 'Maestro') were transplanted into square plastic pots (145 mL volume) filled with a soilless growing medium. To determine the effect of application rate on the growing medium EC and growth of plants, 0, 0.5, 1.0, 1.5, 2.0 and 4.0 g per pot of a controlled release fertilizer (14-14-14 Osmocote, 14N-6.2P-11.6K) were mixed with the growing medium. Plants were subirrigated daily with tap water. In both vinca and salvia, growing medium EC increased as application rate was elevated. Growing medium EC was relatively constant over a whole crop period when the application rate was less than 1.5 g per pot, while it decreased throughout the experiment at higher application rates such as 2.0 to 4.0g per pot in both species. The greatest leaf area, plant height, and shoot dry weight of vinca were obtained when plants were fertilized with 2.0 to 4.0 g per pot of the fertilizer, resulting in a growing medium EC of $1.0{\sim}1.7dS{\cdot}m^{-1}$ throughout the experiment. Leaf area, shoot dry weight, and chlorophyll content of salvia increased with elevated application rates. Leaf area, shoot dry weight, and chlorophyll content of salvia were the greatest when plants were fertilized with 4.0 g per pot, resulting in growing medium EC of $1.0{\sim}4.0dS{\cdot}m^{-1}$ throughout the experiment. Plant height of salvia was the greatest when plants were fertilized with 2.0 to 4.0g per pot. Concentrations of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and sulfur (S) in the shoots of vinca increased, while concentration of calcium (Ca) decreased with elevated application rates. Concentrations of boron (B) and manganese (Mn) in the shoots of vinca increased as the application rate decreased.

Production of doubled haploid population derived from the microspore culture of rapeseed (Brassica napus L.) F1 generation and analysis of fatty acid composition (유채 잡종 1세대의 소포자 배양에 의한 배가반수체 집단 선발 및 지방산 조성 분석)

  • Lee, Ji Eun;Park, Ju Hyun;Kim, Kwang Soo;An, Da Hee;Cha, Young Lok
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.74-81
    • /
    • 2022
  • Brassica napus, an oil crop that produces rapeseed oil, is an allotetraploid (AACC, 2n = 38) produced by natural hybridization between B. rapa and B. oleracea. In this study, microspore was cultured using the F1 developed from a cross between 'EMS26' line with high oleic acid content and 'J8634-B-30' lines. The flower bud size showing the nuclear development at the late uninucleate and binucleate stage with high embryogenesis rate was 2.6 ~ 3.5 mm. Microspores were cultured using only this size and after then most microspore embryo developed into secondary embryos and then regeneration plants obtained from the developed multilobe. The analysis of the ploidy of the plants revealed that 66.7% and 27.8% of the total lines were tetraploids and octoploids, respectively. The sizes of stomatal cells in tetraploids, octoploids, and diploids were 25.5, 35.6, and 19.9 ㎛, respectively, indicating that ploidy level was positively correlated with cell size. Furthermore, 62 tetraploid doubled haploid (DH) lines were selected. The average oleic acid (C18:1) and linolenic acid (C18:3) concentrations of DH were 72.3% and 6.2%, respectively. Oleic acid and linolenic acid concentrations exceeded the two parental values in 5 and 14 DH lines, respectively, suggesting that these two fatty acids had transgressive segregation. Therefore, the DH population can be utilized for the biosynthesis of unsaturated fatty acids in rapeseed and related genes. It can also be used as a breeding material for varieties with high oleic acid concentrations.

Morphological Characteristics, and Coefficient of Variation, Heritability and Genetic Advance of Major Cultivars of Spray Chrysanthemum (주요 스프레이 국화 품종의 형태적 특성과 변이계수, 유전율 및 유전자 전이율)

  • Shim, Sung-Im;Lim, Ki-Byung;Kim, Chang-Kil;Chung, Mi-Young;Kim, Kyung-Min;Chung, Jae-Dong
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.269-281
    • /
    • 2016
  • The statistical analyses of coefficient of variation, heritability, and genetic advance were carried out to identify differences in morphological characteristics, such as the stem and inflorescence length, of 10 major commercial cultivars of spray chrysanthemum (Chrysanthemum morifolium). For morphological characteristics, stem lengths ranged from 46.4 cm to 54.9 cm, the maximum diameter of stem was 5.6 to 8.5 mm, the hardness of the stem was 0.17 to $0.70kg{\cdot}m^{-2}$, the fresh weight of stem was 7.5 to 17.5 g, the dry weight of the stem was 1.6 to 3.3 g, the ratio of dry weight/fresh weight of stem was 15.9% to 23.1%. Also, the number of leaves on the stem was 8.4 to 12.2, the stem leaf area was 17.8 to $37.8m^2$, the fresh weight stem leaves was 5.3 to 18.6 g, the dry weight was 0.5 to 1.4 g and the ratio of dry weight /fresh weight of stem leaves was 7.6% to 11.5%. The inflorescence length ranged from 10.1 to 18.6 cm, the fresh weight of inflorescence was 7.3 to 26.7 g, the dry weight of inflorescence was 1.2 to 2.8 g, the ratio of dry weight /fresh weight of inflorescence was 10.4% to 17.1%. For flower, the diameter of the flower center was 8.2 to 13.3 mm, the petal width was 5.7 to 14.0 mm, the petal length was 12.9 to 33.1 mm, and the petal thickness was 157.8 to $354.4{\mu}m$. The mean values of each character in each cultivar were very different, and DMRT and LSD values based on morphological characteristics among 10 cultivars were highly significant. For variability and genetic parameters, the lowest CV (coefficient of variation), PCV (phenotypic coefficient of variation), and GCV (genotypic coefficient of variation) were 4.79% to 5.15% in stem length, and the highest variations were 62.97% to 65.21% in leaf area. ECV (error or environmental coefficient of variation) was the lowest for leaf area (1.71%) and it was the highest for leaf dry weight (19.30%). Heritability also significantly differed among the characteristics, ranging from 68.69% to 99.67%, the lowest value was shown in ratio of dry weight /fresh weight of stem and the highest value was for leaf area of stem. The value for genetic advance was the lowest in hardness of stem at 0.30 and the highest in leaf thickness at 156.65. The lowest genetic advance as percentage of mean of stem hardness was 9.17%, while the highest percentage of stem length was 134.27%. Thus the characters which had the highest values indicated above show the influence of additive gene action and may provide useful resources for selection programs for agronomic improvement.