• Title/Summary/Keyword: Plant cell

Search Result 3,378, Processing Time 0.029 seconds

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Growth Damage and Alteration of Cellular Tissue of Barley Infected by Barley yellow mosaic virus (보리호위축병 (Barley yellow mosaic virus)에 의한 보리의 생육 피해 및 세포학적 변화)

  • Park, Jong-Chul;Lee, Jae-Dong;Seo, Jae-Hwan;Kim, Yang-Kil;Jeong, Seon-Gi;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • The damage of plant growth and alteration of cellular tissues of barley infected by Barley yellow mosaic virus (BaYMV) was explored. The infected plots significantly damaged in all of measured factors by the disease. In severely diseased plant, the viral infection affected on plant growth like as shorten culm length about 25cm, 36% constrained ratio, comparing to healthy. The yield decreased over 70% in diseased plots by fewer numbers of spike and kernel per square meter and spike, respectively. BaYMV constructed typical inclusion body like a pinwheel type inside barley leaves, and the infection affected on cellular elongation or growth not cell division in examined three parts as stem, neck of panicle and node, related to dwarfness of infected barley. The stem tissues were most severely affected on cell growth as restrained epidermis cell length in diameter and vascular bundle size. In neck of panicle tissues, distribution and size of tissues of fiber and cortex parts, respectively, showed differences between healthy and infected plants. In node part, healthy plant showed bigger tissue size as 1.5 times than infected plant. Theses results suggest that BaYMV infection could affect on the cell growth not cell division, and which resulted shorten culm length in plant growth and decreased yield, finally.

A Study on the Virtual Automotive Plant for a Virtual Manufacturing (가상생산기술 적용을 위한 자동차 가상플랜트 구축에 관한 연구)

  • Noh, Sang-Do;Hong, Sung-Won;Kim, Duck-Young;Sohn, Chang-Young;Hahn, Hyung-Sang;Park, Young-Jin;Shin, Hyun-Shik;Chung, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.718-723
    • /
    • 2000
  • Nowadays, one of the major technical issues in manufacturing is how to implement an virtual plant as an well-designed, integrated environment for sharing information and engineering collaboration among diverse engineering activities. The systematic approaches to make a virtual plant based on a 3-dimensional CAD, cell and line simulation, database and internet technologies are proposed in this paper. To do that, measuring and 3D CAD modeling technologies of many equipments, facilities and structures of the building are developed, effective management of information including models and related files in WWW environment is implemented, and precise simulations of unit cell and whole structured plant are performed. For the beginning of implementing a Virtual Automotive Plant, the Virtual Plant for the Body Shop of a Korean automotive company is constructed and implemented. Using this Virtual Plant, shorten car development time and cost saving are possible.

  • PDF

Production and Purification of tazane Derivatives from the Plane Cell Cultures of Taxus Chinensis in Large-scale Process (식물세포 Taxus chinensis 의 대량 배양액으로부터의 Taxane 유도체 생산 및 정체)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.398-401
    • /
    • 2000
  • Taxiods inclusive paclitaxel were produced isolated and purified from plant cell cultures of Taxus chinensis in large-scale process. their structures were elucidated by spectroscopic analyses. These compounds were exactly identical as those in previous studies from the other biomasses of Taxus chinensis and also other species. Also the concentrations of these compounds were compared with the concentration of the paclitaxel in various batches of plant cell cultures. As paclitaxel concentration increased at the end of cell cultures. the concentrations of the other paclitaxel derivatives decreased. The profile of these taxoids production can provide information for better understanding of structure-activity relationships and biosynthesis Importantly it can be utilized as an useful parameter for the quality control of paclitaxel production.

  • PDF

Effects of Triterpenoids from Luvunga scandens on Cytotoxic, Cell Cycle Arrest and Gene Expressions in MCF-7 Cells

  • Taher, Muhammad;Al-Zikri, Putri Nur Hidayah;Susanti, Deny;Arief Ichwan, Solachuddin Jauhari;Rezali, Mohamad Fazlin
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Plant-derived triterpenoids commonly possesses biological properties such as anti-inflammatory, antimicrobial, anti-viral and anti-cancer. Luvunga scandens is one of the plant that produced triterpenoids. The aims of the study was to analyze cell cycle profile and to determine the expression of p53 unregulated modulator of apoptosis (PUMA), caspase-8 and caspase-9 genes at mRNA level in MCF-7 cell line treated with two triterpenoids, flindissol (1) and 3-oxotirucalla-7,24-dien-21-oic-acid (2) isolated from L. scandens. The compounds were tested for cell cycle analysis using flow cytometer and mRNA expression level using quantitative RT-PCR. The number of MCF-7 cells population which distributed in Sub G1 phase after treated with compound 1 and 2 were 7.7 and 9.3% respectively. The evaluation of the expression of genes showed that both compounds exhibited high level of expression of PUMA, caspase-8 and caspase-9 as normalized to ${\beta}-actin$ via activation of those genes. In summary, the isolated compounds of L. scandens plant showed promising anticancer properties in MCF-7 cell lines.

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.

The Effects of Light on the Production of hGM-CSF in Transgenic Plant Cell Culture (빛 조사시간에 따른 형질전환된 담배세포 성장과 hGM-CSF의 생산에 미치는 영향)

  • 이재화;이재화;김영숙;홍신영;신윤지;서조은;권태호;양문식
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.568-572
    • /
    • 2001
  • Light is one of the most important environmental factors controlling plant physiology. The human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was produced from cell suspension cultures of transgenic tobacco under different light conditions (24 hr light, 18 hr light/dark cycle, dark). Under 24 hr light condition, cell growth was best and dry cell weight reached 14.4 g/L. Light did not influenced the secretion of total proteins. However, in the dark condition, the ratio of secreted total protein/dry cell weight was 1.5 fold higher than those of ethel conditions. Production of hGM-CSF was highest with 18 hr light condition and reached 496.5 ug/L. In addition, the content of hGM-CSf in secreted total proteins was 1.8 fold higher than that of 24 hr light condition, which is beneficial for the purificationof the protein.

  • PDF

Effects of Dykellic Acid Derived from Microorganism on the Cell Growth and Superoxide Dismutase Activity in Tobacco Photomixotrophic Cultured Cells (미생물 유래 Dykellic Acid가 담배 녹색배양세포의 생장 및 Superoxide Dismutase 활성에 미치는 영향)

  • 곽상수;권혜경;권석윤;이행순;이호재;고영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2000
  • To evaluate the biological effects of dykellic acid, a novel apoptosis inhibitor, isolated from microorganism on the plant cells, the cell growth, protein contents, and superoxide dismutase (SOD) activity were investigated in suspension cultures of tobacco photomixotrophic cultured (PM) cells on 12 days after different concentration of chemical treatment. The cells were cultured in MS medium containing 0.7 mg/L 2,4-D, 0.3 mg/L kinetin, 30 g/L sucrose and 200 mM NaCl at $25^{\circ}C$ in the light (100 rpm). Dykellic acid strongly inhibited the cell growth by evaluating the cell fresh wt and the ion conductivity in the medium ($IC_{50}$/, about 20 $\mu$M). The results as inhibition of cell growth and cell wall damage were same. The compound significantly increased the protein contents and the SOD specific activity in proportion with the dosage. The results suggested that dykellic acid may have biological activity in plant cells and tobacco PM cells may be suitable biomaterials for in vitro evaluation of the biological activity of natural products.

  • PDF

Effect of Commercial Plant Cell Wall Degrading Enzymes on Extraction of p-Hydroxybenzoic Acid from Carrot Alcohol Insoluble Residue (AIR) and Cellulose Fraction (당근의 알콜불용성 잔사와 셀룰로오스 분획의, p-Hydroxybenzoic Acid 추출에 미치는 시판 식물세포벽분해효소의 영향)

  • Kang, Yoon-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1633-1637
    • /
    • 2005
  • Five different plant cell wall degrading enzymes were tested for their ability to release p -hydroxybenzoic acid from carrot alcohol insoluble residue (AIR) and cellulose fraction. Phenolics of AIR from cell wall materi민 (CWM) in carrot were found to consist primarily of p-hydroxybenzoic acid (1,977 $\mu$g/g AIR) with minor contribution from vanillin (55.9 $\mu$g/g AIR), ferulic acid (13.6 $\mu$g/g AIR) and p-hydroxybenzaldehyde (10.6 $\mu$g/g AIR). The contents of ferulic acid in Driselase, Cellulase, Macerozyme R-200, Macerozyme R-10 and Sumyzyme MC were 2,319, 2,060, 391, 95.2, 34.1 $\mu$g/g, respectively. Incubation of Driselase with AIR released only 2.8$\%$ of the total 4 M NaOH extractable p-hydroxybenzoic acid. These results indicate that commercial five plant cell wall dograding enzymes can not release P-hydroxybenzoic acid from carrot AIR and cellulose fraction.

Production of hGM-CSF from Cell Suspension Culture of Transformed Lettuce Using Agrobacterium-mediated Transformation System (Agrobacterium을 이용한 형질전환 상추의 세포 현탁배양으로부터 hGM-CSF의 생산)

  • Kim, Young-Sook;Kim, Mi-Young;Kwon, Tae-Ho;Yang, Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Lettuce (Lactuca sativa) was transformed with Agrobacterium tumefacience LBA4404 containing human granulocyte macrophage colony stimulating factor (hGM-CSF) gene to produce in cell suspension cultures. Cell suspension culture was established using callus from transgenic lettuce plant. Integration of hGM-CSF gene into plant chromosome was confirmed through genomic PCR and Southern blot analysis. In addition, Northern blot analysis indicated the expression of the introduced hGM-CSF gene in transformed lettuce. The recombinant hGM-CSF was expressed in transgenic cell cultures derived from transgenic plants as a yield of about 149.0 $\mu\textrm{g}$/L in culture filtrate, which was determined by ELISA. These results demonstrated that transformed lettuce cell suspension cultures could be used as a production system of therapeutic proteins such as hGM-CSF.