• 제목/요약/키워드: Plant breeding

검색결과 1,786건 처리시간 0.034초

Genetic Distances Among Rice Mutant Genotypes Assessed by AFLP and Aluminum Tolerance-Related Traits

  • Malone, Emilia;Kopp, Mauricio Marini;Malone, Gaspar;Branco, Juliana Severo Castelo;Carvalho, Fernando Iraja Felix;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.106-111
    • /
    • 2007
  • Increasing genetic variability with mutagenic agents has been broadly employed in plant breeding because it has the potential to alter one or more desirable traits. In this study, a molecular analysis assessed by Amplified Fragment Length Polymorphisms(AFLPs) and a morphological analysis based on seedlings subjected to aluminum stress were compared. Also, an analysis of allelic frequencies was performed to observe unique alleles present in the pool. Genetic distances ranging from 0.448 to 0.953 were observed, suggesting that mutation inducing was effective in generating variability. The genetic distances based on morphological data ranged from 0(genotypes 22 and 23) to 30.38(genotypes 15 and 29). In the analysis of allelic frequency, 13 genotypes presented unique alleles, suggesting that mutation inducing was also targeting unique sites. Mutants with good performance under aluminum stress(9, 15, 18 and 27) did not form the same clusters when morphological and molecular analyses were compared, suggesting that different genomic regions may be responsible for their better performance.

  • PDF

Virulence Structure of Blumeria graminis f. sp. avenae Populations in Poland across 2014-2015

  • Cieplak, Magdalena;Terlecka, Katarzyna;Ociepa, Tomasz;Zimowska, Beata;Okon, Sylwia
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.115-123
    • /
    • 2021
  • The purpose of this study was to determine the virulence structure of oat powdery mildew (Blumeria graminis f. sp. avenae, Bga) populations in Poland collected in 2014 and 2015. Powdery mildew isolates were collected from 18 locations in Poland. In total, nine lines and cultivars of oat, with different mildew resistance genes, were used to assess virulence of 180 isolates. The results showed that a significant proportion of the Bga isolates found in Poland were virulent to differentials with Pm1, Pm3, Pm6, and Pm3 + Pm8 genes. In contrast Pm4, Pm5, Pm2, and Pm7 genes were classified as resistant to all pathogen isolates used in the experiment. Based on obtained results we can state that there are differences in virulence pattern and diversity parameters between sites and years, but clear trends are not deducible.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

작물 육종에서 분자유전자 지도의 이용 (Genome Mapping Technology And Its Application In Plant Breeding)

  • 은무영
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1995년도 제9회 식물생명공학 심포지움 식물육종과 분자생물학의 만남 The 9th Plant Biotechnology Symposium -Breeding and Molecular Biology-
    • /
    • pp.57-86
    • /
    • 1995
  • Molecular mapping of plant genomes has progressed rapidly since Bostein et al.(1980) introduced the idea of constructing linkage maps of human genome based on restriction fragment length polymorphism (RFLP) markers. In recent years, the development of protein and DNA markers has stimulated interest for the new approaches to plant improvement. While classical maps based on morphological mutant markers have provided important insights into the plant genetics and cytology, the molecular maps based on molecular markers have a number of inherent advatages over classical genetic maps for the applications in genetic studies and/or breeding schemes. Isozymes and DNA markers are numerous, discrete, non-deleterious, codominant, and almost entirely free of environmental and epistatic interactions. For these reasons, they are widely used in constructing detailed linkage maps in a number of plant species. Plant breeders improve crops by selecting plants with desirable phenotypes. However a plant's phenotyes is often under genetic control, positioning at different "quantitative trait loci" (QTLs) together with environmental effects. Molecular maps provide a possible way to determine the effect of the individual gene that combines to produce a quantitative trait because the segregation of a large number of markers can be followed in a single genetic cross. Using market-assisted selection, plants that contain several favorable genes for the trait and do not contain unfavourable segments can be obtained during early breeding processes. Providing molecular maps are available, valuable data relevant to the taxonomic relationships and chromosome evolution can be accumulated by comparative mapping and also the structural relationships between linkage map and physical map can be identified by cDNA sequencing. After constructing high density maps, it will be possible to clone genes, whose products are unknown, such as semidwarf and disease resistance genes. However, much attention has to be paid to level-up the basic knowledge of genetics, physiology, biochemistry, plant pathology, entomology, microbiology, and so on. It must also be kept in mind that scientists in various fields will have to make another take off by intensive cooperation together for early integration and utilization of these newly emerging high-techs in practical breeding. breeding.

  • PDF

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.