• Title/Summary/Keyword: Plant Efficiency

검색결과 2,850건 처리시간 0.03초

설비 로스 절감을 위한 설비정보시스템 설계 (Design of Plant Information System for Decreasing Plant Loss)

  • 김태환;최성희;남승돈
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2005년도 춘계학술대회
    • /
    • pp.91-96
    • /
    • 2005
  • TPM(Total Productive Management) that is enforcing introducing more than $80\%$ in domestic manufacturing industry is using total plant efficiency by the evaluation index, and as a result, can see a lot of examples that plant productivity is increased. This study's purpose centers total productive management activities that is management system for total plant efficiency's maximization, plant information system that total productive management activities factor that is enforcing in manufacturing industry can develop evaluation model that can evaluate qualitative activities by quantitative activities in process that maximize total plant efficiency wishes to do design.

  • PDF

300MW 태안 IGCC 플랜트 종합성능 특성 (Overall Performance characteristic for 300MW Taean IGCC Plant)

  • 김학용;김재환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

Performance Evaluation of Rice Mill Plant By a Computer Simulation

  • Chung, Jong-Hoon
    • Agricultural and Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.7-14
    • /
    • 2001
  • A rice mill plant with a capacity of 3 t/h was constructed with automated facilities at Chonnam National University. A simulation model was developed with SLAMSYSTEM for evaluation and improving the rice mill process. The developed model was validated in the views of hulling efficiency, milling efficiency, milled rice recovery, other materials produced, at bottlenecks in the processes. The results of hulling efficiency, milling efficiency, milled rice recovery in the simulation were, respectively, 81.1%, 89,5%, and 73.1%, while those of the actual mill plant were 81.5%, 90.2%, and 73.5%. The simulation results including the rates of other materials(chaff, bran, broken rice, stone, etc) produced in the processes were almost similar with those of the actual process. In the simulation the bottlenecks were found out in the process for separating brown rice and sorting colored rice. These phenomena also appeared in the actual process. It needed to increase the hourly capacities of the brown rice separator and the rice color sorter. As the developed model could well express the automated rice mill plant, it could be used for designing and improving rice mill plants.

  • PDF

Effects of Sonication and Vacuum Infiltration on Agrobacterium-Mediated Transformation in Immature Embryos of Korean Wheat Genotypes

  • Moon Jung-Hun;Kang Moon-Suk;Heo Hwa-Young;Kwon Young-Up;Lee Sang-Kyu;Lee Kyung-Hee;Lee Byung-Moo
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.415-418
    • /
    • 2004
  • The effects of sonication and vacuum infiltration on transformation efficiency was investigated by using immature embryos of Korean wheat as explants. Two Agrobacterium tumefaciens strains, KYRT1 and EHA105, carrying pCAMBIA 1305.1 were used. Transformation efficiency was demonstrated by the detection of $\beta-glucu-ronidase$ (GUS) activity. GUS expression showed clear difference among Korean wheat cultivars. Geurumil showed higher GUS expression efficiency $79.1\%$ compared with other cultivars. The effects of the duration of vacuum infiltration and sonication treatment showed a tendency high GUS expression efficiency by their combination. In comparison with other Agrobacterium strains, KYRT1 showed high efficiency in most Korean cultivars.

Varietal Difference Based on Efficiency of Rice Anther Floating Culture

  • Kang, Hyeon-Jung;Lee, Seong-Yeob;Kim, Hyun-Soon;Lee, Jae-Gil
    • 한국작물학회지
    • /
    • 제47권5호
    • /
    • pp.335-340
    • /
    • 2002
  • To evaluate the efficiency of anther floating culture according to the maturing group, the varietal difference and classification of fifty varieties was conducted in N6 liquid medium containing 1mg $l^{-1}$ NAA, 0.25 mg $l^{-1}$ kinetin. The efficiency of callus induction was widely ranged from 0 to 113.4%, but the mean callus induction was not significantly different among maturing groups. The efficiency of anther floating culture showed the highest variation in early-maturing group among three maturing groups. The varieties with the best callus induction were Sambaegbyeo and Jinbuolbyeo, while the recalcitrant variety was Obongbyeo in early-maturing group. The efficiency of plant regeneration showed the highest trends in late-maturing group among three maturing groups. The fifty varieties were classified into three groups (distance=0.78) by cluster analysis based on the callus formation and plant regeneration. Group including only two varieties, Shinunbongbyeo and Sambaegbyeo had the excellent androgenic efficiency, and the medium efficiency of Group was included thirty-six varieties. Whereas twelve varieties, including three Tongil varieties were fell into the bad efficiency of Group. Especially, Tongil varieties containing Japonica rice, Obongbyeo were the recalcitrant genotypes for the anther floating culture.

미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가 (Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant)

  • 문태영;;이은도;이정우;양원
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

사전예방을 위한 설비안전정보시스템 개발 (Development of Plant Safety Information Management System for Preventive Maintenance)

  • 김태환;양광모;최성희;강경식
    • 대한안전경영과학회지
    • /
    • 제7권2호
    • /
    • pp.1-12
    • /
    • 2005
  • TPM(Total Productive Management) that is enforcing introducing more than $80\%$ in domestic manufacturing industry is using total plant efficiency by the evaluation index, and as a result, can see a lot of examples that plant productivity is increased. This study's purpose centers total productive management activities that is management system for total plant efficiency's maximization, plant information system that total productive management activities factor that is enforcing in manufacturing industry can develop evaluation model that can evaluate qualitative activities by quantitative activities in process that maximize total plant efficiency wishes to do design.

열병합발전의 성능 모니터링을 위한 발전효율 모델 (Power Generation Efficiency Model for Performance Monitoring of Combined Heat and Power Plant)

  • 고성근;고홍철;이준석
    • 플랜트 저널
    • /
    • 제16권4호
    • /
    • pp.26-32
    • /
    • 2020
  • 화력발전소에서 장치 이상이나 열화로 인해 발전효율이 저하될 때 운전자가 이를 감지하고 적시에 조처를 취할 수 있도록 지원하는 성능관리시스템은 무엇보다도 발전효율을 정확하게 예측하는 것이 중요하다. 공정용 증기 또는 난방용열(이하 공정용 증기로 단일화 표기)과 전기를 동시에 생산하는 열병합발전에 대해 지금까지 다수의 발전효율 모델들이 제안되었는데, 대부분 공정용 증기의 가치를 제대로 평가하지 못해 발전효율을 정확하게 예측하지 못했다. 본 연구에서는 발전효율 예측 모델의 계수를 조업 데이터를 통해 결정하고, 공정용 증기의 전기 환산효율(ECE, Electricity Conversion Efficiency) 모델을 적용함으로써 공정용 증기의 가치를 정확하게 평가할 수 있도록 하였다. 본 방법을 열병합발전의 설계 데이터에 적용하여 발전부하에 대한 발전효율의 추세선을 구한 결과 R2가 99.91%로 회귀 수준이 매우 높았다. 본 결과로부터 조업 데이터를 이용한 ECE 모델 계수 결정 방법이 발전효율을 정확하게 예측하여 열병합발전에 대한 성능 모니터링에 적합함을 확인할 수 있었다.

고도처리 효율 향상을 위한 통계적 접근 (Improvement of Operating Efficiency on Advanced Wastewater Plant Using Statistical Approach)

  • 문경숙;민경섭;김승민;이찬형
    • 한국환경과학회지
    • /
    • 제17권4호
    • /
    • pp.405-412
    • /
    • 2008
  • Statistical analysis technique was applied to operating parameters and removal efficiency data sets obtained from advanced wastewater treatment plant during 1 year. Through factor analysis three factors derived varimax rotation were selected each plant. Three components explained 96%, 87% of the total variance of the process, respectively. The components on $A_2O$ Plant were identified in the following order : 1) Shortening the SRT during high-flow period, 2) Keeping biomass high on winter 3) factor was related to DO. On DNR plant, we defined them as follows: factor 1, Prolonged the SRT during high-flow period; factor 2 was related to sludge return; factor 3, Influent BOD during low-DO period. This technique was believed to assist operators in identifying priorities to improve operation efficiency.