• Title/Summary/Keyword: Plant Disease Detection

Search Result 268, Processing Time 0.02 seconds

Involvement of Heat-stable and Proteinaceous Materials in the Culture of Pseudomonas putida JB-1 for the Inhibition of Tobacco mosaic virus Infection

  • Jeon, Yong-Ho;Kim, Jae-Hyun;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.328-336
    • /
    • 2008
  • Out of various fungi and bacteria tested for inhibition of Tobacco mosaic virus(TMV) infection using Nicotiana tabacum cv. Xanthi-nc, a bacterial isolate JB-l, identified as Pseudomonas putida had a strong direct inhibitory activity against the TMV infection. Its systemic or indirect activity was also noted at more than a half level of the direct control efficacy. Disease severity was reduced significantly in the susceptible tobacco N. tabacum cv. NC 82 by the treatment of the bacterial culture filtrate, somewhat more by the pretreatment than by simultaneous treatment, probably by inhibiting the TMV transmission and translocation in the plants, showing negative serological, which responses in the viral detection by DAS-ELISA. TMV-inhibitory substances from P. putida JB-1 were water-soluble, stable to high temperature(even boiling), and to a wide range of pH. As proteinase K nullified their antiviral activity, the TMV inhibition activity of P. putida may be derived from proteinaceous materials. In electron microscopy, TMV particles treated with the JB-1 culture were shown to be shrunken with granule-like particles attached on them. All of these aspects suggest that P. putida JB-1 may be developed as a potential agent for the control of TMV.

Incidence and Distribution of Barley yellow dwarf virus Infecting Oats in Korea

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Kim, Sang-Min;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.32-38
    • /
    • 2022
  • A survey of Barley yellow dwarf virus (BYDV) was conducted in major oat-growing areas of Korea in 2020. BYDV is an economically important pathogen of cereal crops that can be transmitted by aphids. The present study evaluated the genetic composition of BYDV in oat from eight geographical areas in Korea. Multiplex reverse transcription-polymerase chain reaction was used to screen 322 oat leaf samples for six BYDV strains (PAV, MAV, SGV, PAS, RPV, and RMV). The 125 samples (~39%) tested positive for BYDV. BYDV-PAV, BYDV-SGV, BYDV-PAS, and BYDV-RPV were detected from oat in different areas. Most of the BYDV-infected samples were assigned to subgroup I (n=112). The results indicate that BYDV-PAV could be dominant throughout Korea. Also, the phylogenetic analysis of coat protein sequences indicated that 23 BYDV isolates from Korea could be separated into two clades, which exhibited high nucleotide sequence similarity. In conclusion, the present survey provides a BYDV infection assessment for domestic oat varieties in Korea and basic information for the development of BYDV control measures in Korea's oat industry.

Trunk Injection of Citrus Trees with a Polymeric Nanobactericide Reduces Huanglongbing Severity Caused by Candidatus Liberibacter asiaticus

  • Ramiro Guerrero-Santos;Gabriela Cabrales-Orona;John Paul Delano-Frier;Judith Cabello-Romero;Jose Roman Torres-Lubian;Jose Humberto Valenzuela-Soto
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.139-150
    • /
    • 2024
  • Huanglongbing (HLB) is a disease caused by the phloem-limited Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry worldwide. To date, only indirect strategies have been implemented to eradicate HLB. Included among these is the population control of the psyllid vector (Diaphorina citri), which usually provides inconsistent results. Even though strategies for direct CLas suppression seem a priori more promising, only a handful of reports have been focused on a confrontation of the pathogen. Recent developments in polymer chemistry have allowed the design of polycationic self-assembled block copolymers with outstanding antibacterial capabilities. Here, we report the use of polymeric nano-sized bactericide particles (PNB) to control CLas directly in the phloem vasculature. The field experiments were performed in Rioverde, San Luis Potosí, and is one of the most important citrusproducing regions in Mexico. An average 52% reduction in the bacterial population was produced when PNB was injected directly into the trunk of 20 infected trees, although, in some cases, reduction levels reached 97%. These results position PNB as a novel and promising nanotechnological tool for citrus crop protection against CLas and other related pathogens.

Proteome Changes in Penicillium expansum Grown in a Medium Derived from Host Plant

  • Xia, Xiaoshuang;Li, Huan;Liu, Fei;Zhang, Ye;Zhang, Qi;Wang, Yun;Li, Peiwu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.624-632
    • /
    • 2017
  • Penicillium expansum causes blue mold rot, a prevalent postharvest disease of pome fruit, and is also the main producer of the patulin. However, knowledge on the molecular mechanisms involved in this pathogen-host interaction remains largely unknown. In this work, a two-dimensional gel electrophoresis-based proteomic approach was applied to probe changes in P. expansum 3.3703 cultivated in apple juice medium, which was used to mimic the in planta condition. The results showed that the pH value and reducing sugar content in the apple juice medium decreased whereas the patulin content increased with the growing of P. expansum. A total of 28 protein spots that were up-regulated in P. expansum when grown in apple juice medium were identified. Functional categorization revealed that the identified proteins were mainly related to carbohydrate metabolism, secondary metabolism, protein biosynthesis or degradation, and redox homeostasis. Remarkably, several induced proteins, including glucose dehydrogenase, galactose oxidase, and FAD-binding monooxygenase, which might be responsible for the observed medium acidification and patulin production, were also detected. Overall, the experimental results provide a comprehensive interpretation of the physiological and proteomic responses of P. expansum to the host plant environment, and future functional characterization of the identified proteins will deepen our understanding of fungi-host interactions.

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique;Yang Mingxiu;Xu Xiaofeng;Ni Zhe;Haseeb Younis;Peng Lili;Zhang Junhua
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Analysis of Five Arboviruses and Culicoides Distribution on Cattle Farms in Jeollabuk-do, Korea

  • Yang, Daram;Yang, Myeon-Sik;Rhim, Haerin;Han, Jae-Ik;Oem, Jae-Ku;Kim, Yeon-Hee;Lee, Kyoung-Ki;Lim, Chae-Woong;Kim, Bumseok
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.477-485
    • /
    • 2018
  • Arthropod-borne viruses (Arboviruses) are transmitted by arthropods such as Culicoides biting midges and cause abortion, stillbirth, and congenital malformation in ruminants, apparently leading to economic losses to farmers. To monitor the distribution of Culicoides and to determine their relationship with different environmental conditions (temperature, humidity, wind speed, and altitude of the farms) on 5 cattle farms, Culicoides were collected during summer season (May-September) in 2016 and 2017, and analyzed for identification of species and detection of arboviruses. About 35% of the Culicoides were collected in July and the collection rate increased with increase in temperature and humidity. The higher altitude where the farms were located, the more Culicoides were collected on inside than outside. In antigen test of Culicoides against 5 arboviruses, only Chuzan virus (CHUV) (2.63%) was detected in 2016. The Akabane virus (AKAV), CHUV, Ibaraki virus and Bovine ephemeral fever virus (BEFV) had a positive rate of less than 1.8% in 2017. In antigen test of bovine whole blood, AKAV (12.96%) and BEFV (0.96%) were positive in only one of the farms. As a result of serum neutralization test, antibodies against AKAV were generally measured in all the farms. These results suggest that vaccination before the season in which the Culicoides are active is probably best to prevent arbovirus infections.

Construction of ELISA System for the Detection of Indian citrus ringspot virus (Indian citrus ringspot virus의 ELISA 진단 시스템 구축)

  • Shin, Myeung-Ju;Kwon, Young-Chul;Ro, Hyeon-Su;Lee, Hyun-Sook
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.231-235
    • /
    • 2012
  • Indian citrus ring spot virus (ICRSV) is known to cause a serious disease to citrus, especially to Kinnow mandarin, the popular cultivated citrus species in India. In this study, we developed diagnostic systems based on enzyme-linked immunosorbent assay (ELISA). In order to generate antibodies against ICRSV coat protein, we overexpressed the coat protein in Escherichia coli using the pET15b expression vector containing an optimized ICRSV coat protein gene. The recombinant ICRSV coat protein was overexpressed as soluble form at $37^{\circ}C$ upon IPTG induction. The protein was purified to 95% in purity by Ni-NTA column chromatography. The purified protein was immunized to rabbit for the generation of polyclonal antibody (PAb). The PAb showed a specific immunoreaction to recombinant ICRSV coat protein in western blot analysis and ELISA. Diluted rabbit antisera (10,000 fold) could detect less than 10 ng and 5 ng of the target protein in western blot and ELISA analysis, respectively.

Survey of Overwintering Inoculum Potential of Anthracnose of Sweet Persimmon Caused by Colletotrichum gloeosporioides (감나무 탄저병균(Collectotrichum gloeosporioides)의 월동 전염원 조사)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Chung, Bu-Keun
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.204-206
    • /
    • 2007
  • In 2006 to 2007, the potential inoculum source of the anthracnose of sweet persimmon caused by Colletotrichum gloeosporioides was surveyed. The infected twigs, buds, dead twigs, petiole, leaves, dropped fruits were collected and tested for their possibility as overwintering inoculum. The detection rates of the pathogen from various parts of sweet persimmon tree were varied. When the collected samples were examined in April. Over than 93.3% of infected twig samples were harbored mycelia of C. gloeosporioides, and 46.7% of infected buds, 36.7% of dead twigs, 23.3% of petioles, and 16.7% of leaves were beared pathogenic fungus. No pathogenic fungus were detecded from healthy twigs and buds. Infected twigs and bud was important overwintering sites and formed conidia actively in next spring. The infected twigs, leaves, petioles, and fruits in growing season produced great number of conidia and caused active dissemination of the anthracnose disease in sweet persimmon. In growing season, all of the infected parts, such as twigs, leaves, petioles, and fruits produced pathogenic fungus.

Molecular Detection and Subtyping of Blastocystis in Korean Pigs

  • Paik, Seunghyun;Jung, Byeong Yeal;Lee, Haeseung;Hwang, Mi-Hye;Han, Jee Eun;Rhee, Man Hee;Kim, Tae-Hwan;Kwon, Oh-Deog;Kwak, Dongmi
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.525-529
    • /
    • 2019
  • Blastocystis is one of the most commonly detected genera of protozoan parasites in the human intestines as well as the intestines of many other species such as pigs in several geographical regions worldwide. However, no studies have examined Blastocystis in pigs in Korea. In this study, PCR and nucleotide sequencing were performed to evaluate the genetic diversity and zoonotic potential of Blastocystis using pig fecal samples. We obtained 646 stool samples from groups of piglets, weaners, growers, finishers, and sows in Korea. A total of 390 Blastocystis-positive samples were identified, and the infection rate was 60.4%. The infection rates were significantly related to age and region. The 4 subtypes (STs) of Blastocystis confirmed by phylogenetic analysis were ST1, ST2, ST3, and ST5, indicating the high genetic diversity of Blastocystis in Korean pigs. ST5 was highly distributed in Korean pigs among detected STs in this study. Some sequences were closely related to those of Blastocystis isolated from humans. This is the first study of Blastocystis in pigs in Korea. Based on the results, Blastocystis is prevalent in Korean pigs. Although a small number of samples were obtained in some areas, the clinical development of Blastocystis infection in pigs and potential for human transmission should be further examined.

Race- and Isolate-specific Molecular Marker Development through Genome-Realignment Enables Detection of Korean Plasmodiophora brassicae Isolates, Causal agents of Clubroot Disease

  • Jeong, Ji -Yun;Robin, Arif Hasan Khan;Natarajan, Sathishkumar;Laila, Rawnak;Kim, Hoy-Taek;Park, Jong-In;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.506-513
    • /
    • 2018
  • Clubroot is one of the most economically important diseases of the Brassicaceae family. Clubroot disease is caused by the obligate parasite Plasmodiophora brassicae, which is difficult to study because it is nonculturable in the laboratory and its races are genetically variable worldwide. In Korea, there are at least five races that belongs to four pathotype groups. A recent study conducted in Korea attempted to develop molecular markers based on ribosomal DNA polymorphism to detect P. brassicae isolates, but none of those markers was either race-specific or pathotype-specific. Our current study aimed to develop race- and isolate-specific markers by exploiting genomic sequence variations. A total of 119 markers were developed based on unique variation exists in genomic sequences of each of the races. Only 12 markers were able to detect P. brassicae strains of each isolate or race. Ycheon14 markers was specific to isolates of race 2, Yeoncheon and Hoengseong. Ycheon9 and Ycheon10 markers were specific to Yeoncheon isolate (race 2, pathotype 3), ZJ1-3, ZJ1-4 and ZJ1-5 markers were specific to Haenam2 (race 4) isolate, ZJ1-35, ZJ1-40, ZJ1-41 and ZJ1-49 markers were specific to Hoengseong isolate and ZJ1-56 and ZJ1-64 markers were specific to Pyeongchang isolate (race 4, pathotype 3). The PCR-based sequence characterized amplified region (SCAR) markers developed in this study are able to detect five Korean isolates of P. brassicae. These markers can be utilized in identifying four Korean P. brassicae isolates from different regions. Additional effort is required to develop race- and isolate-specific markers for the remaining Korean isolates.