References
- Andersen B, Smedsgaard J, Frisvad JC. 2004. Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J. Agric. Food Chem. 52: 2421-2428. https://doi.org/10.1021/jf035406k
- Puel O, Galtier P, Oswald IP. 2010. Biosynthesis and toxicological effects of patulin. Toxins 2: 613-631. https://doi.org/10.3390/toxins2040613
- Droby S, Wisniewski M, Macarisin D, Wilson C. 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Techmol. 52: 137-145. https://doi.org/10.1016/j.postharvbio.2008.11.009
- Liu J, Sui Y, Wisniewski M, Droby S, Liu YS. 2013. Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 167: 153-160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004
- Barad S, Horowitz SB, Kobiler I, Sherman A, Prusky D. 2014. Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum. Mol. Plant Microbe Interact. 27: 66-77. https://doi.org/10.1094/MPMI-05-13-0138-R
- Sanzani SM, Reverberi M, Punelli M, Ippolito A, Fanelli C. 2012. Study on the role of patulin on pathogenicity and virulence of Penicillium expansum. Int. J. Food Microbiol. 153: 323-331. https://doi.org/10.1016/j.ijfoodmicro.2011.11.021
- Vilanova L, Vinas I, Torres R, Usall J, Buron-Moles G, Teixido N. 2014. Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum. Int. J. Food Microbiol. 178: 39-49. https://doi.org/10.1016/j.ijfoodmicro.2014.02.022
- Zong Y, Li B, Tian S. 2015. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum. Int. J. Food Microbiol. 206: 102-108. https://doi.org/10.1016/j.ijfoodmicro.2015.05.007
- Ballester A, Marcet-Houben M, Levin E, Sela N, Selma-Lazaro C, Carmona L, et al. 2015. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity. Mol. Plant Microbe Interact. 28: 232-248. https://doi.org/10.1094/MPMI-09-14-0261-FI
- Li B, Zong Y, Du Z, Chen Y, Zhang Z, Qin G, et al. 2015. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Mol. Plant Microbe Interact. 28: 635-647. https://doi.org/10.1094/MPMI-12-14-0398-FI
- Yu J, Jurick II WM, Cao H, Yin Y, Gaskins VL, Losada L, et al. 2014. Draft genome sequence of Penicillium expansum strain R19, which causes postharvest decay of apple fruit. Genome Announc. 2: e00635-14.
- Gonzalez-Fernandez R, Jorrin-Novo JV. 2012. Contribution of proteomics to the study of plant pathogenic fungi. J. Proteome Res. 11: 3-16. https://doi.org/10.1021/pr200873p
- Crespo-Sempere A, Gil JV, Martinez-Culebras PV. 2011. Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions. Int. J. Food Microbiol. 147: 162-169. https://doi.org/10.1016/j.ijfoodmicro.2011.03.021
- Sun Y, Yi X, Peng M, Zeng H, Wang D, Li B, et al. 2014. Proteomics of Fusarium oxysporum Race 1 and Race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt. PLoS One 9: e113818. https://doi.org/10.1371/journal.pone.0113818
- Giacometti J, Tomljanovic AB, Josic D. 2013. Application of proteomics and metabolomics for investigation of food toxins. Food Res. Int. 54: 1042-1051. https://doi.org/10.1016/j.foodres.2012.10.019
- Kim SH, Kim SK, Jung KH, Kim YK, Hwang HC, Ryu SG, Chai YG. 2013. Proteomic analysis of the oxidative stress response induced by low-dose hydrogen peroxide in Bacillus anthracis. J. Microbiol. Biotechnol. 23: 750-758 https://doi.org/10.4014/jmb.1209.09070
- Stoll DA, Link S, Kulling S, Geisen R, Schmidt-Heydt M. 2014. Comparative proteome analysis of Penicillium verrucosum grown under light of short wavelength shows an induction of stress-related proteins associated with modified mycotoxin biosynthesis. Int. J. Food Microbiol. 175: 20-29. https://doi.org/10.1016/j.ijfoodmicro.2014.01.010
- Yang LB, Dai XM, Zheng ZY, Zhu L, Zhan XB, Lin CC. 2015. Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. J. Microbiol. Biotechnol. 25: 1056-1069. https://doi.org/10.4014/jmb.1412.12026
- Li H, Wang Y, Liu F, Yang Y, Wu Z, Cai H, et al. 2015. Effects of chitosan on control of postharvest blue mold decay of apple fruit and the possible mechanisms involved. Sci. Hortic. 186: 77-83. https://doi.org/10.1016/j.scienta.2015.02.014
- Marsden W, Gray P, Quinlan M. 1982. Evaluation of the DNS method for analyzing lignocellulosic hydrolysate. J. Chem. Technol. Biotechnol. 32: 1016-1022.
- Wang Y, Kroon JKM, Slabas AR, Chivasa S. 2013. Proteomics reveals new insights into the role of light in cadmium response in Arabidopsis cell suspension cultures. Proteomics 13: 1145-1158. https://doi.org/10.1002/pmic.201200321
- Cai H, Yuan X, Pan J, Li H, Wu Z, Wang Y. 2014. Biochemical and proteomic analysis of grape berries (Vitis labruscana) during cold storage upon postharvest salicylic acid treatment. J. Agric. Food Chem. 62: 10118-10125. https://doi.org/10.1021/jf503495z
- Taguchi T, Kozutsumi D, Nakamura R, Sato Y, Ishihara A, Nakajima H. 2013. Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice. Biosci. Biotechnol. Biochem. 77: 138-144. https://doi.org/10.1271/bbb.120629
- Kubicek CP, Starr TL, Glass NL. 2014. Plant cell walldegrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52: 427-451. https://doi.org/10.1146/annurev-phyto-102313-045831
- Zhang TY, Sun XP, Xu Q, Gonzalez-Candelas L, Li HY. 2013. The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Appl. Microbiol. Biotechnol. 97: 9087-9098. https://doi.org/10.1007/s00253-013-5129-x
- Sanchez-Torres P, Gonzalez-Candelas L. 2003. Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. Mol. Plant Pathol. 4: 447-457. https://doi.org/10.1046/j.1364-3703.2003.00190.x
- Tremblay A, Hosseini P, Li S, Alkharouf NW, Matthews BF. 2013. Analysis of Phakopsora pachyrhizi transcript abundance in critical pathways at four time-points during infection of a susceptible soybean cultivar using deep sequencing. BMC Genomics 14: 614. https://doi.org/10.1186/1471-2164-14-614
- Egea L, Aguilera L, Gimenez R, Sorolla MA, Aguilar J, Badia J, Baldoma L. 2007. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int. J. Biochem. Cell Biol. 39: 1190-1203. https://doi.org/10.1016/j.biocel.2007.03.008
- Lau SKP, Tse H, Chan JSY, Zhou AC, Curreem SOT, Lau CCY, et al. 2013. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment. FEBS J. 280: 6613-6626. https://doi.org/10.1111/febs.12566
- Barad S, Horowitz SB, Moscovitz O, Lichter A, Sherman A, Prusky D. 2012. A Penicillium expansum glucose oxidaseencoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. Mol. Plant Microbe Interact. 25: 779-788. https://doi.org/10.1094/MPMI-01-12-0002
-
Kettle AJ, Carere J, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM. 2015. A
${\gamma}$ -lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genet. Biol. 83: 1-9. https://doi.org/10.1016/j.fgb.2015.08.005 - Yang T, Chen T, Tsai JJP, Hu R. 2014. NagZ is required for beta-lactamase expression and full pathogenicity in Xanthomonas campestris pv. campestris str. 17. Res. Microbiol. 165: 612-619. https://doi.org/10.1016/j.resmic.2014.08.008
- Eswaramoorthy S, Bonanno JB, Burley SK, Swaminathan S. 2009. Mechanism of action of a flavin containing monooxygenase. Proc. Natl. Acad. Sci. USA 103: 9832-9837.
- Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O. 2009. Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155: 1738-1747. https://doi.org/10.1099/mic.0.024836-0
- Fernandes I, Alves A, Correia A, Devreese B, Esteves AC. 2014. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fungal Biol. 118: 516-523. https://doi.org/10.1016/j.funbio.2014.04.006
- Ke X, Yin Z, Song N, Dai Q, Voegele RT, Liu Y, et al. 2014. Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree. Fungal Genet. Biol. 68: 31-38. https://doi.org/10.1016/j.fgb.2014.04.004
- Qin G, Tian S, Chan Z, Li B. 2007. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum. Mol. Cell. Proteomics 6: 425-438. https://doi.org/10.1074/mcp.M600179-MCP200
Cited by
- Current Status and Future Opportunities of Omics Tools in Mycotoxin Research vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110433
- Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity vol.8, pp.None, 2017, https://doi.org/10.1016/j.toxrep.2021.04.013