• Title/Summary/Keyword: Plant Cell Culture

Search Result 622, Processing Time 0.032 seconds

The Filter Membrane Culture Procedure with Feeder Cells in Rice Protoplast Culture (Filter membrane과 feeder세포를 이용한 벼의 원형질체 배양)

  • LEE, Sung-Ho;SHON, Young Geol;Lee, Soo In;DAVEY Micheal R.;COCKING Edward C.;CHO, Moo Je
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.295-303
    • /
    • 1997
  • To investigate the response on feeder cell cultures, protoplasts isolated from cell suspensions initiated from mature seed scutellum-derived callus of the Japonica rice variety Taipei 309, were cultured on filter membranes under various conditions. The effects of various factors, such as gelling agents, feeder cell and protoplast densities, species of feeder cells and heat shock treatment, have been investigated to improve protoplast plating efficiencies on filter membranes. Maximum protoplast plating efficiencies were obtained when protoplasts were cultured on KPR medium semi-solidified with Sea Plaque agarose at a density of $5\;\times\;10^{5}\;ml^{-1}$ protoplasts in the presence of Lolium multiflorum as feeder cells (0.5 ml pcv per 10 ml of protoplast culture medium). Pre-culture heat shock treatments for 1 min. and 5 min. to the protoplasts did not give any appreciable increase on the plating efficiency of protoplasts in the presence of feeder cells. Maltose-supplemented medium was superior for plant regeneration from protoplast-derived colonies compared with medium containing only sucrose. The plants were transferred to the glasshouse, flowered and were fertile.

  • PDF

High frequency plant regeneration system for Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures

  • Oh, Myung-Jin;Na, Hye-Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk-Weon
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.125-128
    • /
    • 2010
  • Culture conditions were established for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Nymphoides coreana. Zygotic embryos formed pale-yellow globular structures and calluses at a frequency of 85.6% when cultured on half-strength Murashige and Skoog (MS) medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. However, the frequency of pale-yellow globular structures and white callus formation decreased slightly with an increasing concentration of 2,4-D up to 10 $mg\;l^{-1}$ with the frequency rate falling to 16.7%. Cell suspension cultures were established from zygotic embryo-derived calluses using half-strength MS medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. Upon plating onto half-strength MS basal medium, over 92.3% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted into potting soil and achieved full growth to an adult plant in a growth chamber. The high frequency plant regeneration system for Nymphoides coreana established in this study will be useful for genetic manipulation and cryopreservation of this species.

Morphological variation of Scenedesmus quadricauda (Turpin) de Br bisson and Scenedesmus armatus (Chodat) G.M. Smith in culture (내실배양에 따른 Scenedesmus quadricauda(Turpin) de Br bisson과 Scenedesmus armatus(Chodat) G.M. Smith의 형태변이)

  • 안선숙
    • Journal of Plant Biology
    • /
    • v.28 no.4
    • /
    • pp.305-315
    • /
    • 1985
  • Morphological variations within the species of Scenedesmus in Korea, S. armatus and 2 strains of S. quadricauda were investigated. Taxonomic characters such as length of long spine, ridge, unicell-colony transformation, and colony types were compared. The length of long spine was constant, whereas the distribution of the spine varied with the age of culture. Ridge and short spine in S. armatus occurred constantly, whereas those in S. quadricauda varied with the composition of the media and age of culture. Strains CY-1 and CY-2 showed 6 different colony types in the stationary culture, whereas S. armatus formed only two types, armatus and armatus-longus types. All strains showed unicell-colony transformation. The cell became minimum when the daughter cell was released, and reached maximum at division.

  • PDF

Production and Secretion of Human Interleukin-18 in Transgenic Tobacco Cell Suspension Culture

  • Sharma, Niti;Kim, Tae-Geum;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.154-159
    • /
    • 2006
  • Interleukin-18 (IL-18), otherwise known as interferon-gamma-inducing factor (IGIF), is one of several well characterized and important cytokines that contribute to host defenses. The complementary DNA (cDNA) of mature human interleukin-18 gene (hIL-18) was fused with the signal peptide of the rice amylase 1A gene (Ramy1A) and introduced into the plant expression vector under the control of a duplicated CaMV 35S promoter. The recombinant plasmid was transformed into tobacco (Nicotiana tabacum L. cv Havana) using the Agrobacterium-mediated transformation method. The integration of the hlL-18 gene into the genome of transgenic tobacco plants was confirmed by polymerase chain reaction (PCR) amplification and its expression was observed in the suspension cells that were derived from the transgenic plant callus by using Northern blot analysis. The hlL-18 protein was detected in the extracts of the transgenic callus and in the medium of the transgenic tobacco suspension culture by using immunoblot analysis. Based upon enzyme-linked immunosorbant assay (ELISA) results, the expression level of the hlL-18 protein approximated $166{\mu}g/L$ in the suspension culture medium. Bioassay results from the induction of $interferon-{\gamma}$ from a KG-1 cell line indicated that the hlL-18 secreted into the suspension culture medium was bioactive.

Effect of Various Carbon Sources on the Production and Stabilization of hGM-CSF in Transgenic Plant Suspension Culture (형질전환된 식물세포에서 hGM-CSF 생산과 안정성에 대한 다양한 탄소원의 효과)

  • Lee Jae-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.313-319
    • /
    • 2005
  • The effects of various carbon sources on the secretion of hGM-CSF, total protein and protease into the medium were investigated in transgenic tobacco cells. The dry cell weight (11.2 g/L) and wet cell weight (310.8 g/L) were highest at 30 g/L glucose after 5-day culture but, the dry cell weight (13.4 g/L) and wet cell weight (480 g/L) were highest at 30 g/L sucrose after 10-day culture. The total protein (110.3 mg/L), protease activity (3950 U/L) and total secreted hGM-CSF (56 mg/L) were highest at 30 g/L sucrose after 10-day culture. Stabilization of the total secreted protein and hGM-CSF in various carbon source concentrations was determined. Total secreted protein was most stabilized in the medium containing sucrose. However, the loss of the total protein was increased with the concentrations of high level in medium containing sorbitol, mannitol, fructose, and glucose. hGM-CSF was more stabilized in the medium containing sucrose than in the medium containing sorbitol, mannitol, fructose, glucose.

Development of Cell Lines for Application of Recombinant DNA Techniques in Crops (작물의 유전자 재조합을 위한 세포주의 개발 연구)

  • Chae, Young-Am;Choi, Kyu-Whan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.195-200
    • /
    • 1985
  • This experiment was carried out to know the processes of protoplast isolation, culture and plant regeneration in aims of introducing foreign genes into plant cells through plant gene vector, and cellular selection for plant improvement. The main results indicated that 2% cellulase plus 0.5% macerozyme is proper for isolation of protoplasts from leaf mesophyll cells of N. plumbaginifolia, plating efficiency was higher in 1.4-2.0 x 10$^4$ cells/ml, complete cell wall was regenerated after 2 days culture, cell division and cell mass were observed after 4 days and 2 weeks, respectively, colony was developed after 3 weeks culture, addition of 1-2mg/l BA promoted shoot differentiation while root differentiation did not required hormone and seeds were harvested from more than 100 cell lines for further investigation and study.

  • PDF

Improvement of Peroxidase Productivity by Optimization of Medium Composition and Cell Inoculum Size in Suspension Cultures of Sweet Potato (Ipomoea batatas) (고구마(Ipomoea batatase)현탁배양에서 배지조성 및 세포접종량의 적정화에 의한 Pemxidase생산성 향상)

  • 곽상수;김수경;정경희;유순희;박일현;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 1994
  • To improve the productivity of peroxidase (POD) of cell line SP-47 derived from cell suspension cultures of sweet potato (Ipomoea batatas (L) Lam.cv White Star), we optimized culture conditions including the composition and concentration of plant growth regulators and carbon source, and the cell inoculum size. When one g (fr wt) of cells was inoculated into 50 mL TL medium supplemented with l mg/L 2,4-D and 30g/L sucrose in 300 mL Erlenmeyer flask at 25$^{\circ}C$ in the dark (100rpm), the POD activity per g cell dry wt was maximized to be about 6,800 units after 25 days of subculture, which was about 30 times higher than that of intact roots of horseradish plants grown in the greenhouse, but the cell growth was maximum after 15 days of subculture. The protein content per g cell dry wt maintained almost plateau and after 25 days of subculture decreased as culture Proceeded further whereas the POD specific activity (unit/mg protein) was about two times higher after subculture and continuously increased from 12 days to the end of cultures (40 days). The POD isozyme patterns showed almost the same regardless of cell growth stage, but some acidic isozymes were slightly increased after 25 days of subculture. These results indicate that POD activity in suspension cultures of sweet potato is closely associated with cell growth and stresses derived from cell culture renditions and medium depletion. Due to its high POD activity the SPL47cell line seems to be suitable for the mass production of POD.

  • PDF

Effect of Nitrogen Source on Cell Growth and Anthocyanin Production in Callus and Cell Suspension Culture of 'Sheridan' Grapes

  • Kim, Seung-Heui;Kim, Seon-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • To establish in vitro mass production system of grape anthocyanin pigments through callus and cell suspension culture, the effects of nitrogen amount and the ratio of $NO_3^-$/$NH_4^+$ in the medium on cell growth and anthocyanin production were investigated. Total nitrogen amount and the ratio of $NO_3^-$/$NH_4^+$ in the medium strongly affected anthocyanin production and cell growth. When $NH_4^+$ was fixed, the cell growth was promoted by 50 mM total nitrogen (20 mM $NO_3^-$ : 30 mM $NH_4^+$ ) than other nitrogen combinations, and was strongly inhibited when $NO_3^-$ was lacking (0 mM $NO_3^-$ : 60 mM $NH_4^+$ ) while anthocyanin production was increased. When $NO_3^-$ was fixed, the cell growth was promoted by 70 mM total nitrogen (40 mM $NO_3^-$ : 30 mM $NH_4^+$) than other nitrogen combinations, and was strongly inhibited when $NO_3^-$ was lacking (0 mM $NO_3^-$ : 60 mM $NH_4^+$ ) while anthocyanin production was increased. Cell growth was gradually increased by all nitrogen combinations, but anthocyanin production reached its peak on day 4 in culture. Anthocyanin content increased with decreasing cell density. Sucrose was rapidly hydrolyzed to fructose and glucose within 4 days. Glucose and fructose concentrations in the medium increased and peaked at the 4th day. The anthocyanin content of $NH_4^+$-free 2% sucrose media was 2 times (200 $\mu\textrm{g}$/g) higher than that of 1% sucrose. When $NO_3^-$ was lacking, the highest anthocyanin production was observed at 4% sucrose after 12 days of culture, and increased along with the sucrose concentration.

Enhanced Production of Digoxin by Digitoxin Biotransformation Using In Situ Adsorption in Digitalis lanata Cell Cultures

  • Hong, Hee-Jeon;Lee, Jong-Eun;Ahn, Ji-Eun;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.478-483
    • /
    • 1998
  • For the enhanced production of a cardiac glycoside, digoxin, using in situ adsorption by biotransformation from digitoxin in plant cell suspension cultures, selection of proper resins was attempted and the culture conditions were optimized. Among various kinds of resins tested, Amberlite XAD-8 was found to be the best for digoxin production in considering adsorption characteristics as well as the effect on cell growth. Adequate time for resin addition was determined to be 36 h from the beginning of biotransformation and the presence of resins should be as short as possible to increase the productivity. In addition, to prevent the cells from direct contact with resin particles, immobilized systems were designed and examined. Immobilization further improved the advantages of in situ adsorption. It was confirmed that the increase of the contact area for mass transfer was an important factor in utilizing an immobilized system to enhance digoxin production.

  • PDF

Adaptive Estimation of Hairy Root Mass Using Conductometry

  • Kim, Ji-Hyeon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.641-646
    • /
    • 2003
  • An accurate and efficient method for measuring the mass of hairy roots using conductometry is established. A conductivity equation expressed in terms of the concentration of the ion species in the medium is suggested. By using this equation, the effect of the individual ions on the total conductivity can be quantitatively analyzed. An equation for the in situ estimation of the cell growth coefficient for determining the mass of hairy roots is established based on measurements of the nitrogen concentration and conductivity during cultivation. The proposed equation does not require preliminary experiments to determine the cell growth coefficient. Instead, the physiological characteristics of the plant species are reflected by introducing the cellular nitrogen content. Since the cell growth coefficient is determined by measuring the major ionic nutrient concentrations, it is more effective to express the dynamics of an actual culture system. This improved method for determining the mass of hairy roots was successfully utilized in a fed-batch culture system.