• Title/Summary/Keyword: Plant Cell Culture

Search Result 622, Processing Time 0.026 seconds

Secretory Production of hGM-CSF with a High Specific Biological Activity by Transgenic Plant Cell Suspension Culture

  • Kwon, Tae-Ho;Shin, Young-Mi;Kim, Young-Sook;Jang, Yong-Suk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • The human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene was introduced into tobacco plants. The cell suspension culture was established from leaf-derived calli of the transgenic tobacco plants in order to express and secrete a biologically active hGM -CSF. The recombinant hGM-CSF from the transgenic plant cell culture (prhGM-CSF) was identified as a yield of about 180 ${\mu}$g/L in the culture filtrate, as determined by ELISA. The addition of 0.5 g/L polyvinylpyrrolidone (PVP) to the plant cell culture medium both stabilized the secreted prhGM-CSF and increased the level of production approximately 1.5-fold to 270 ${\mu}$g/L. The biological activity of the prhGM-CSF was confirmed by measuring the proliferation of the hGM-CSF-dependent cell line, TF-1. Interestingly, the specific activity of the prhGM-CSF was estimated to be approximately 2.7 times higher than that of a commercially available preparation from E. coli.

method of Using Hydrolysis to Increase Paclitaxel Yield from plant Cell Culture (가수분해방법에 의한 식물세포배양여액으로부터 Paclitaxel 수율증가)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.402-404
    • /
    • 2000
  • This work is method that uses a hydrolysis for increasing yield of paclitaxel in plant cell cultures. The best pH is 3.0 to obtain a maximum yield at fixed reaction temperature and time t pH 3.0 reaction temperature 80$^{\circ}C$ and reaction time 8 hr give the highest yield which is three time of control. This is very simple and efficient method to increase paclitaxel yield in plant cell cultures.

  • PDF

Recovery of Plant Cell and Its Debris by pH Control (pH 조절에 의한 식물세포 및 세포조각 회수)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.405-407
    • /
    • 2000
  • A novel recovery method was developed to obtain the plant cell and its debris from Taxus chinensis cell cultures By pH control of plant cell cultures plant cell and debris was precipitated. The best pH is between 1.8 and 2.2 to obtain the precipitate of the plant cell and debris. Also paclitaxel is stable in this acidic conditions. This method is very simple an efficient to recover the plant cell and debris from plant cell cultures.

  • PDF

Present Status and Prospects of in vitro Production of Secondary Metabolites from Plant sin China

  • Chen, Xian-Ya;Xu, Zhi-Hong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.40-56
    • /
    • 1995
  • During the past two decades, China has seen her great progress in plant biotechnology. Since the Chinese market of herb medicine is huge, while the plant resources are shrinking, particular emphasis has been placed in plant tissue and cell cultures of medicinal plants, this includes fast propagation, protoplast isolation and regeneration, cell suspension cultures and large scale fermentation. To optimize culture conditions for producing secondary compounds in vitro, various media, additives and elicitors have been tested. Successful examples of large scale culture for the secondary metabolite biosynthesis are quite limited : Lithospermum ery throrhizon and Arnebia euchroma for shikonin derivatives, Panax ginseng, P. notoginseng, P. quinquefolium for saponins, and a few other medicinal plants. Recent development of genetic transformation systems of plant cells offered a new approach to in vitro production of secondary compounds. Hairy root induction and cultures, by using Ri-plasmid, have been reported from a number of medicinal plant species, such as Artemisia annua that produces little artemisinin in normal cultured cells, and from Glycyrrhiza uralensis. In the coming five years, Chinese scientists will continue their work on large scale cell cultures of a few of selected plant species, including Taxus spp. and A. annua, for the production of secondary metabolites with medicinal interests, one or two groups of scientists will be engaged in molecular cloning of the key enzymes in plant secondary metabolism.

  • PDF

Changes of Plant Cell Size Index by Culture Conditions (배양 조건에 따른 식물세포 크기 지수의 변화)

  • 김상목;박인석;이상윤;이규화;김동일
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.438-443
    • /
    • 1998
  • Effects of various environmental factors on cell size index(FCW/DCW) in Thalictrum rugosum. Lithospermum erythrorhizon and Taxus cuspidata plant cell suspension cultures were investigated. Time course change of cell size index were also observed. In batch cultures, FCW/DCW increased according to the decrease of sugar concentration. For short-term experiment within 24 hr, FCW/DCW value could be reduced significantly by increasing sugar concentration. When an osmoticum such as mannitol was added, FCW/DCW converged to a low value. Therefore, it was confirmed that osmolality of the medium was important in determining cell size or water content of the cells. Inorganic salts or treatment with organic solvent also exhibited some effect on the cell size index. However, pH and centrifugal force did not show any influences. On the other hand, it was found that the addition of Pluronic F-68 reduced FCW/DCW. By combining these results effectively, it may be possible to increase the cell concentration in high density culture to a higher extent.

  • PDF

Effect of Cell Source and pH of Culture Medium on the Production of Canthin-6-one Alkaloids from the Cell Cultures of Tongkat Ali (Eurycoma longifolia Jack)

  • Mahmud, Luthfi-Aziz;Chan;Boey
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • Callus and cell suspension cultures of Eurycoma longifolia Jack could be an alternative supply of 9-hydroxycanthin-6-one and 9-methoxycanthin-6-one. The callus tissues were initiated from leaves of different trees. The friable calli were used for the preparation of the cell suspension cultures of E. longifolia. The leaf explant of tree Eu-9 produced the most callus and also induced high cell biomass in the cell suspension culture, but it produced low quantity of 9-methoxycanthin- 6-one and 9-hydroxycanthin-6-one. The leaf explant from tree Eu-8 produced low quantity of callus and cell biomass, but produced the highest quantity of 9-methoxycanthin- 6-one and 9-hydroxycanthin-6-one. Optimum production of cell biomass was obtained on cell culture medium with pH 5.75 prior to autoclaving, but high alkaloids content could be induced in culture medium in acidic condition with pH 4.75 and 5.25 prior to autoclaving.

Growth Rate and Biomass Productivity of Chlorella as Affected by Culture Depth and Cell Density in an Open Circular Photobioreactor

  • Liang, Fang;Wen, Xiaobin;Geng, Yahong;Ouyang, Zhengrong;Luo, Liming;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.539-544
    • /
    • 2013
  • The effects of culture depth (2-10 cm) and cell density on the growth rate and biomass productivity of Chlorella sp. XQ-200419 were investigated through the use of a self-designed open circular pond photobioreactor-imitation system. With increases in culture depths from 2 to 10 cm, the growth rate decreased significantly from 1.08 /d to 0.39 /d. However, the biomass productivity only increased slightly from 8.41 to 11.22 $g/m^2/d$. The biomass productivity (11.08 $g/m^2/d$) achieved in 4 cm culture with an initial $OD_{540}$ of 0.95 was similar to that achieved in 10 cm culture with an initial $OD_{540}$ of 0.5. In addition, the duration of maximal areal productivity at a 4 cm depth was prolonged from 1 to 4 days, a finding that was also similar to that of the culture at a 10 cm depth. In both cases, the initial areal biomass densities were identical. Based on these results and previous studies, it can be concluded that the influence of culture depth and cell density on areal biomass productivity is actually due to different areal biomass densities. Under suitable conditions, there are a range of optimal biomass densities, and areal biomass productivity reaches its maximum when the biomass density is within these optimal ranges. Otherwise, biomass productivity will decrease. Therefore, a key factor for high biomass productivity is to maintain an optimal biomass density.

Perfusion Cultivation of Transgenic Nicotiana tabacum Suspensions in Bioreactor for Recombinant Protein Production

  • Lee Sang-Yoon;Kim Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.673-677
    • /
    • 2006
  • A perfusion culture of transgenic Nicotiana tabacum cell suspensions, transformed to express recombinant glucuronidase (GUS), was successfully performed in a 5-1 stirred tank bioreactor. With 0.1 $day^{-1}$ of perfusion rate, the maximum dry cell weight (DCW) reached to 29.5 g/l in 16 days, which was 2.1-fold higher than the obtained in batch culture (14.3 g/l). In terms of the production of GUS, the volumetric activity could be increased up to 12.8 U/ml by using perfusion, compared with 4.9 U/ml in batch culture. The specific GUS activities in both perfusion and batch cultures were maintained at similar levels, 200-400 U/g DCW. Consequently, a perfusion culture could be a good strategy for the enhanced production of recombinant proteins in a plant cell culture system.

Establishment of a novel plant regeneration system from suspension-derived callus in the halophytic Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.228-235
    • /
    • 2010
  • The establishment of cell suspension culture and plant regeneration of the halophytic Leymus chinensis (Trin.) are described in this study for the first time. Callus induction solid medium containing Murashige and Shoog (MS) basic salt, $2.0\;mg\;l^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D), and $5.0\;mg\;l^{-1}$ L-glutamic acid with $30.0\;g\;l^{-1}$ sucrose and $4.0\;g\;l^{-1}$ gelrite for solidification induced the highest rate of cell division in Type 1 callus among calli of various types. Liquid medium with the same hormone distribution was therefore, used for cell suspension culture from Type 1 callus. Over a 30 d suspension culture at 100 rpm, great amounts of biomass were accumulated, with 71.07% average daily increment and 22.32-fold total fresh weight increment. Comparison of before and after suspension culture, the distribution of different size callus pieces and the maintenance of callus type were basically unaltered, but a slight increase in relative water contents was observed. To induce the potential of plant regeneration, the directly transferring on plant regeneration solid medium containing MS basic salt, $0.2\;mg\;l^{-1}$ $\alpha$-naphthalene acetic acid (NAA), $2.0\;mg\;l^{-1}$ kinetin (Kn), and $2.0\;g\;l^{-1}$ casamino acid and indirectly transferring were simultaneously performed. Even now growth rates of suspension-derived callus on solid medium were approximately half of those of Type 1 callus, but faster somatic embryogenesis was observed. Rooting of all regenerated shoots was successfully performed on half-strength MS medium. All plants appeared phenotypically normal.