• Title/Summary/Keyword: Plane of motion

Search Result 785, Processing Time 0.028 seconds

A Study on Changes in Appendage Design for Improvement of Dynamic Stability of Manta-type Unmanned Undersea Vehicle (Manta형 무인잠수정의 동안정성 향상을 위한 부가물의 설계 변경에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho;Kwon, Hyeong-Ki;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.323-331
    • /
    • 2007
  • Proposed Manta-type Unmanned Undersea Vehicle(UUV) turned out to have the tendency of dynamic instability in vertical plane, and moreover to have that of so strong dynamic stability in horizontal plane as to cause another problem in turning motion due to negative value of sway damping lever. The authors discussed the changes in appendage design for improvement of dynamic stability of UUV in vertical and horizontal planes. As a result, the dynamic stability in vertical plane was improved by increasing the area of horizontal stern planes. and the dynamic stability in horizontal plane was also improved by removal of lower vertical plate and by adjusting the area and position of upper vertical plate simultaneously.

Dynamic Characteristics of a Piezoelectric Driven Stick-Slip Actuator for Focal Plane Image Stabilization (초점면부 영상안정화를 위한 압전형 마찰구동기의 동특성 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.399-405
    • /
    • 2009
  • The focal plane image stabilization for a satellite camera is one of the an effective method which can increase the satellite camera's image quality by removing the motion disturbance of a focal plane. The objectives of this article are to introduce the concept of the focal plane image stabilization and determine the best driving conditions of the actuator for the response and thrust. Under various driving condition the experiments have been performed to investigate the response and thrust characteristics of the piezoelectric driven stick-slip actuator of the focal plane image stabilizing device. From experiments, the best driving frequency and duty ratio for the magnesium slider are 70 kHz and 27%, respectively.

Anti-swing of the Nonlinear Overhead Crane Using Partial State Feedback Control (부분상태 궤환제어를 이용한 비선형 천정크레인의 진자각제어)

  • Lee, Jong-Kyu;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.907-917
    • /
    • 1997
  • The purpose of this study is to design an anti-sway motion for industrial overhead cranes which transport objects on a horizontal plane by adjusting movements of a trolley motor and a girder motor. The movement of a hoist motor has not been considered at this time since its role was assumed to move objects only vertically, therefore, not to affect the swing motion of objects. The dynamic behavior of the swing motion shows nonlinear characteristics, which makes the design of anti-sway motion controller difficult. First of all, the nonlinear state equation for the motion of industrial overhead cranes has been derived. Then they have been linearized about normal operating states determined by the dynamic characteristics of motor motion-acceleration, constant speed, and deceleration, and deceleration, during transportation. The partial state feedback control algorithm based on this linearized state equation has been developed on order to suppress the swing motion. The simulation results have demonstrated satisfactory performance of the proposed controller.

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

Task-based adaptive control of redundant manipulators (여유 자유도 매니퓰레이터의 작업공간 적응제어)

  • Nam, Heon-Seong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.895-901
    • /
    • 1993
  • This paper present controller designs based on the configuration control framework for a redundant manipulator to accomplish the basic task of desired, end-effector motion, while utilizing the redundancy to achieve the additional tasks such as joint motion control, obstacle avoidance, singularity avoidance. etc. A task based decentralized adaptive scheme is then applied for the configuration variables to track some reference trajectories as close as possible. Simulation results for a direct-drive three-link arm in the vertical plane demonstrate its capabilities for performing various useful tasks.

  • PDF

Nonlinear Behavior in Love Model with Discontinuous External Force

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • This paper proposes nonlinear behavior in a love model for Romeo and Juliet with an external force of discontinuous time. We investigated the periodic motion and chaotic behavior in the love model by using time series and phase portraits with respect to some variable and fixed parameters. The computer simulation results confirmed that the proposed love model with an external force of discontinuous time shows periodic motion and chaotic behavior with respect to parameter variation.

An experimental study on the human upright standing posture exposed to longitudinal vibration

  • Shin, Young-Kyun;Arif Muhammad;Inooka Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.77.2-77
    • /
    • 2002
  • Human upright standing posture in the sagittal plane is studied, when it exposed in the antero-posterior vibration. A two link inverted pendulum model is considered and described its functional behavior in terms of ankle and hip joint according to the dominant joints that provides the largest contribution to the corresponding human reactionary motion. The data is analyzed, both in the time domain and the frequency domain. Subjects behave as a non-rigid pendulum with a mass and a spring throughout the whole period of the platform motion. When vision was allowed, each segment of body shows more stabilized.

  • PDF

A Study on the Mandibular Movements in the Patients with TMJ Lock Closed -Range and pattern of mandibulr movement- (악관절 폐구성 과두걸림 환자의 하악운동에 관한 연구 -치료전후의 하악운동 범위 및 양상 -)

  • Sung-Chang Chung;Hyung-Suk Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.16 no.1
    • /
    • pp.113-120
    • /
    • 1991
  • The authors examined the patterns and various ranges of mandibular movements in TMJ lock closed patients in the frontal, sagittal and horizontal plane pre-end post-treatment. And the author obtained the following results. 1. In the frontal plane, the patterns and ranges of mandibular movement of the patients were very irregular and small before treatment. But after the treatment, the patterns were similar to the typical shield shape of the normal subjects. And the velocity of opening and closing was improved after the treatment. 2. In the sagittal plane, the mean amount of maximum mouth opening was 27.0±4.0mm before treatment and 44.0±5.4mm after treatment. And there was statistically significant improvement(p<0.005). The patterns of the movement were very irregular and small before treatment, but were similar to the shape of "Posselt's envelope of motion" after the treatment. The velocity of opening and closing was improved after the treatment 3. In the horizontal plane, the mean amount of maximum laterotrusion was 8l2±2.5mm in the affected side and 6.7±2.2mm in the non-affected side before treatment. There was a significant difference between the sides(p<0.05). After the treatment, the mean was 10.4±2.6mm in the affected side and 8.9±2.3mm in the non-affected side and there was no significant difference between the sides(p>0.05). There was no significant difference in the mean amount of maximum protrusion between the before and aftertreatment(p>0.05), but the patterns of the movements were improved.

  • PDF

DEVELOPMENT OF THE SNU COELOSTAT: CONCEPTUAL DESIGN

  • Kang, Juhyung;Chae, Jongchul;Kwak, Hannah;Yang, Heesu
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.207-214
    • /
    • 2018
  • A coelostat is often used for solar observations, because it corrects the image rotation automatically by guiding sunlight into a fixed telescope with two plane mirrors. For the purposes of education and spectroscopic observation, the solar group at Seoul National University (SNU) plans to develop the SNU coelostat (SNUC) and install it in the SNU Astronomical Observatory (SAO). Requirements of the SNUC are < 1" positioning accuracy with 30 cm beam size on the entrance pupil in the compact dome. To allow for installation in the small dome, we design a compact slope type coelostat with a 45 cm primary plane mirror and a 39 cm secondary plane mirror. The motion of the SNUC is minimized by fixing the position of the slope frame. Numerical simulations of the available observational time of the designed coelostat shows that the sun can be observed ay all times from June to early August and at least three hours in other months. Since the high accuracy driving motors installed in the SNUC can be affected by external environment factors such as humidity and temperature variations, we design a prototype to test the significance of these effects. The prototype consists of a 20 cm primary plane mirror, a 1 m slope rail, a direct drive motor, a ballscrew, a linear motion guide, an AC servo motor, a reduction gear and a linear encoder. We plan to control and test the accuracy of the prototype with varying atmospheric conditions in early 2019. After testing the prototype, the SNUC will be manufactured and installed in SAO by 2020.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.