• Title/Summary/Keyword: Plane curve

Search Result 425, Processing Time 0.027 seconds

A pointed blaschke manifold in euclidean space

  • Kim, Young-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.393-400
    • /
    • 1994
  • Subminifolds of Euclidean spaces have been studied by examining geodesics of the submanifolds viewed as curves of the ambient Euclidean spaces ([3], [7], [8], [9]). K.Sakamoto ([7]) studied submanifolds of Euclidean space whose geodesics are plane curves, which were called submanifolds with planar geodesics. And he completely calssified such submanifolds as either Blaschke manifolds or totally geodesic submanifolds. We now ask the following: If there is a point p of the given submanifold in Euclidean space such that every geodesic of the submanifold passing through p is a plane curve, how much can we say about the submanifold\ulcorner In the present paper, we study submanifolds of euclicean space with such property.

  • PDF

The Analysis of Relationships between Road Alignment and Terrain Conditions for National Forest Road (국유림도(國有林道)의 노선선형(路線線形)과 지형(地形)과의 관계분석(關係分析))

  • Cha, Du Song;Cho, Koo Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.517-524
    • /
    • 1995
  • This study was conducted to investigate the characteristics of the road alignment, correlations among evaluation factors of the alingment, and the relationships between the evaluation factors and terrain factors for the forest road of five National Forest Offices. The results were as follows : 1. The elongation coefficients(${\eta}$) of forest road in Kangnung and Wonju National Forest Office were ranged 0.3~0.5, and those of Andong, Namwon, and Kongju National Forest Offices were ranged 0.2~0.3 in straight line of 100m, 200m, and 300m. 2. Three different types of plane alignment were identified for Kangnung and Wonju National Forest Offices, Namwon and Kongju National Forest Offices, Andong National Forest Office. However, longitudinal alignment for five National Forest Offices tended to be similar conditions. 3. Low correlation coefficients were calculated in the relation between elongation coefficients(${\eta}$) and evaluation factors of plane alignment(curve length ratio(%), sum of inverse number of each curve radius(m/km), and sum of each intersection angle($^{\circ}/km$)) for three straight lines. On the contrary, high correlation coefficients were obtained among the relations of curve length ratio(%), sum of inverse number of each curve radius(m/km), and sum of each intersection angle($^{\circ}/km$). 4. Slope(%) were closely correlated with plane alignment, and so were the relationships between frequency of valleys and streams(No./km) and elongation coefficients(${\eta}$) of forest road.

  • PDF

Design of an Expert System for the Optimal Use of Solar Energy (태양에너지 최적 이용을 위한 전문가시스템 구축)

  • 조덕기;최인수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.183-219
    • /
    • 1997
  • In this research, the intensity of solar energy, which was injected to the different angle plane every hour day by day, was technically documented and quantitatively analyzed through actual observations. In order to group every days into days with similar intensity, graph was drawn with respect to time for every dary and each area value under the curve was calculated. Then, the search for grouped days having similar intensity curve patterns was carried out. In order to maximize the efficiency of solar energy systems, the optimum incident angle of absorber plate was derived.

  • PDF

ON THE ARCHIMEDEAN CHARACTERIZATION OF PARABOLAS

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2103-2114
    • /
    • 2013
  • Archimedes knew that the area between a parabola and any chord AB on the parabola is four thirds of the area of triangle ${\Delta}ABP$ where P is the point on the parabola at which the tangent is parallel to AB. We consider whether this property (and similar ones) characterizes parabolas. We present five conditions which are necessary and sufficient for a strictly convex curve in the plane to be a parabola.

SHARYGIN TRIANGLES AND ELLIPTIC CURVES

  • Netay, Igor V.;Savvateev, Alexei V.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1597-1617
    • /
    • 2017
  • The paper is devoted to the description of family of scalene triangles for which the triangle formed by the intersection points of bisectors with opposite sides is isosceles. We call them Sharygin triangles. It turns out that they are parametrized by an open subset of an elliptic curve. Also we prove that there are infinitely many non-similar integer Sharygin triangles.

PARTIAL SUMS AND INCLUSION RELATIONS FOR STARLIKE FUNCTIONS ASSOCIATED WITH AN EVOLUTE OF A NEPHROID CURVE

  • Gurpreet Kaur ;Sumit Nagpal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1477-1496
    • /
    • 2023
  • A class of normalized univalent functions f defined in an open unit disk of the complex plane is introduced and studied such that the values of the quantity zf'(z)/f(z) lies inside the evolute of a nephroid curve. The inclusion relations of the newly defined class with other subclasses of starlike functions and radius problems concerning the second partial sums are investigated. All the obtained results are sharp.

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

VISUAL CURVATURE FOR SPACE CURVES

  • JEON, MYUNGJIN
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.487-504
    • /
    • 2015
  • For a smooth plane curve, the curvature can be characterized by the rate of change of the angle between the tangent vector and a fixed vector. In this article we prove that the curvature of a space curve can also be given by the rate of change of the locally defined angle between the tangent vector at a point and the nearby point. By using height functions, we introduce turning angle of a space curve and characterize the curvature by the rate of change of the turning angle. The main advantage of the turning angle is that it can be used to characterize the curvature of discrete curves. For this purpose, we introduce a discrete turning angle and a discrete curvature called visual curvature for space curves. We can show that the visual curvature is an approximation of curvature for smooth curves.

New Analytical Method with Curvature Based Kinematic Deflection Curve Theory

  • Tayyar, Gokhan Tansel
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-199
    • /
    • 2012
  • This paper reports a new analytical method to calculate the planar displacement of structures. The cross-sections were assumed to remain in plane and the deflection curve was evaluated using the curvature values geometrically, despite being solved with differential equations. The deflection curve was parameterized with the arc-length of the curvature values, and was taken as an assembly of chains of circular arcs. Fast and accurate solutions of complex deflections can be obtained easily. This paper includes a comparison of the nonlinear displacements of an elastic tapered cantilever beam with a uniform moment distribution among the proposed analytical method, numerical method of the theory and large deflection FEM solutions.

A Study on Accuracy of J-Resistance Curves Measured with Curved Compact Tension Specimen of Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 휘어진 CT시편으로 측정한 J 저항곡선의 정확도에 관한 연구)

  • Yoon, Kee-Bong;Park, Tae-Gyu;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1986-1996
    • /
    • 2003
  • Methodology based on the elastic-plastic fracture mechanics has been widely accepted in predicting the critical crack length(CCL) of pressure tubes of CANDU nuclear plants. A conservative estimate of CCL is obtained by employing the J-resistance curves measured with the specimens satisfying plane strain condition as suggested in the ASTM standard. Due to limited thickness of the pressure tubes the curved compact tension(CT) specimens taken out from tile pressure tube have been used in obtaining J-resistance curves. The curved CT specimen inevitably introduce slant fatigue crack during precracking. Hence, effect of specimen geometry and slant crack on J-resistance curve should be explored. In this study, the difference of J integral values between the standard CT specimens satisfying plane strain condition and the nonstandard curved CT with limited thickness (4.2mm) is estimated using finite element analysis. The fracture resistance curves of Zr-2.5Nb obtained previously by other authors are critically discussed. Various finite element analysis were conducted such as 2D analysis under plane stress and plane strain conditions and 3D analysis for flat CT, curved CT with straight crack and curved CT with slant crack front. J-integral values were determined by local contour integration near the crack tip, which was considered as accurate J-values. J value was also determined from the load versus load line displacement curve and the J estimation equation in the ASTM standard. Discrepancies between the two values were shown and suggestion was made for obtaining accurate J values from the load line displacement curves obtained by the curved CT specimens.