DOI QR코드

DOI QR Code

PARTIAL SUMS AND INCLUSION RELATIONS FOR STARLIKE FUNCTIONS ASSOCIATED WITH AN EVOLUTE OF A NEPHROID CURVE

  • Gurpreet Kaur (Department of Mathematics Mata Sundri College for Women University of Delhi) ;
  • Sumit Nagpal (Department of Mathematics University of Delhi)
  • Received : 2022.08.23
  • Accepted : 2022.09.06
  • Published : 2023.11.30

Abstract

A class of normalized univalent functions f defined in an open unit disk of the complex plane is introduced and studied such that the values of the quantity zf'(z)/f(z) lies inside the evolute of a nephroid curve. The inclusion relations of the newly defined class with other subclasses of starlike functions and radius problems concerning the second partial sums are investigated. All the obtained results are sharp.

Keywords

References

  1. R. M. Ali, N. K. Jain, and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557-6565. https://doi.org/10.1016/j.amc.2011.12.033 
  2. M. K. Aouf, J. Dziok, and J. Sokol, On a subclass of strongly starlike functions, Appl. Math. Lett. 24 (2011), no. 1, 27-32. https://doi.org/10.1016/j.aml.2010.08.004 
  3. K. Arora and S. S. Kumar, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc. 59 (2022), no. 4, 993-1010. https://doi.org/10.4134/BKMS.b210602 
  4. N. E. Cho, V. Kumar, S. S. Kumar, and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213-232. https://doi.org/10.1007/s41980-018-0127-5 
  5. J. Edwards, An Elementary Treatise on the Differential Calculus: with applications and numerous examples, London Macmillan & Co., New York, 1892. 
  6. S. Gandhi, P. Gupta, S. Nagpal, and V. Ravichandran, Starlike functions associated with an epicycloid, Hacet. J. Math. Stat. 51 (2022), no. 6, 1637-1660. https://doi.org/10.15672/hujms.1019973 
  7. P. Goel and S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957-991. https://doi.org/10.1007/s40840-019-00784-y 
  8. P. Gupta, S. Nagpal, and V. Ravichandran, Inclusion relations and radius problems for a subclass of starlike functions, J. Korean Math. Soc. 58 (2021), no. 5, 1147-1180. https://doi.org/10.4134/JKMS.j200465 
  9. W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970), 159-177. https://doi.org/10.4064/ap-23-2-159-177 
  10. W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326 
  11. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7 
  12. K. Khatter, V. Ravichandran, and S. S. Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 1, 233-253. https://doi.org/10.1007/s13398-017-0466-8 
  13. S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, Paper No. 54, 34 pp. https://doi.org/10.1007/s13324-021-00483-7 
  14. S. S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199-212. 
  15. E. H. Lockwood, A Book of Curves, Cambridge Univ. Press, New York, 1961. 
  16. W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994. 
  17. V. S. Masih and S. Kanas, Subclasses of starlike and convex functions associated with the limacon domain, Symmetry 12 (2020), no. 6, 942. https://doi.org/10.3390/sym12060942 
  18. R. Mendiratta, S. Nagpal, and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (2014), no. 9, 1450090, 17 pp. https://doi.org/10.1142/S0129167X14500906 
  19. R. Mendiratta, S. Nagpal, and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365-386. https://doi.org/10.1007/s40840-014-0026-8 
  20. M. Mundalia and S. S. Kumar, On a subfamily of starlike functions related to hyperbolic cosine function, J. Anal. 31 (2023), no. 3, 2043-2062. https://doi.org/10.1007/s41478-023-00550-1 
  21. K. S. Padmanabhan, On certain classes of starlike functions in the unit disk, J. Indian Math. Soc. (N.S.) 32 (1968), 89-103. 
  22. R. K. Raina and J. Sokol, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 973-978. https://doi.org/10.1016/j.crma.2015.09.011 
  23. R. K. Raina and J. Sokol, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat. 44 (2015), no. 6, 1427-1433.  https://doi.org/10.15672/HJMS.2015449676
  24. V. Ravichandran, F. Ronning, and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1997), no. 1-4, 265-280. https://doi.org/10.1080/17476939708815027 
  25. K. Sharma, N. K. Jain, and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923-939. https://doi.org/10.1007/s13370-015-0387-7 
  26. R. Singh, On a class of star-like functions, Compositio Math. 19 (1967), 78-82 (1967). 
  27. J. Sokol, On some subclass of strongly starlike functions, Demonstratio Math. 31 (1998), no. 1, 81-86.  https://doi.org/10.1515/dema-1998-0111
  28. J. Sokol, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2009), no. 2, 349-353. https://doi.org/10.5666/KMJ.2009.49.2.349 
  29. J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101-105. 
  30. L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 178, 20 pp. https://doi.org/10.1007/s13398-020-00913-4 
  31. L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 1, 79-104. https://doi.org/10.1007/s40840-020-00935-6 
  32. Y. Yunus, S. A. Halim, and A. B. Akbarally, Subclass of starlike functions associated with a limacon, AIP Conf. Proc. 1974 (2018), no. 1, 030023.