• Title/Summary/Keyword: Plane Cracks

Search Result 174, Processing Time 0.02 seconds

An Integral Equation of Various Cracks for Safety in Finite Plane Bodies (유한영역에서 안전을 위한 여러 형태의 균열 해석용 적분방정식 적용연구)

  • 서욱환
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.10-18
    • /
    • 1999
  • An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, the integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in finite plane bodies. The method was developed for in-plane(mode I and II) loadings only. In this paper, the method is formulated and applied to various crack problems involving multiple and branch cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.implicity.

  • PDF

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

AN INTEGRAL EQUATION FOR KINKED CRACKS APPLIED TO MODE III IN FINITE PLANE BODIES (유한영역에서의 모드 III 꺾인균열 해석을 위한 적분방정식 적용연구)

  • Sur, Ukhwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.111-129
    • /
    • 1998
  • An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, an integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in plane finite bodies. The method was developed for in-plane(modes I and II) loadings only. In this paper, the method is formulated and applied to mode III problems involving smooth or kinked cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.

  • PDF

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

In-plane vibrations of cracked slightly curved beams

  • Oz, H. Ridvan
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.679-695
    • /
    • 2010
  • In-plane vibrations of slightly curved beams having cracks are investigated numerically and experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and depth of the cracks are determined using a Bruel & Kjaer 4366 type accelerometer. Then the beam is assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending, extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a crack is used in the analysis. Frequencies are obtained numerically for different crack locations and depths. Experimental results are presented and compared with the numerical solutions. The natural frequencies are affected too much due to larger moments when the crack is around nodes. The effect can be neglected when it is at the location of maximum displacements. When the crack is close to the clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and validity of the equations are discussed.

Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

A Study on Mode III Kinked Crack Analysis Using Displacement-Discontinuity Method (변위 불연속 방법에 의한 모드 III 꺾인 균열 해석 연구)

  • 서욱환
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.104-110
    • /
    • 2000
  • An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, an integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in plane finite bodies. The method was developed for in-plane (modes I and II) loadings only. In this paper, the method is formulated and applied to mode III problems involving smooth or kinked cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.implicity.

  • PDF

A Study on Comparison of UT with RT for the Detection of Defects in Weldzone (UT와 RT에서의 용접부 결함 검출 비교에 관한 연구)

  • 남궁재관
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.29-33
    • /
    • 1996
  • In this study, specimens were prepared which have some defects on the buttweld joint of mild steel. In order to detect the defects of specimens, the following tests were put to : AUT and RT. When the results of the three tests were compared, the conclusion could be brought to as follows. 1) AUT outstrips RT in the abillity to detect plane defects like slags or cracks, but RT excels AUT in the ability to detect spheroidal defects like blowholes. 2) RT detects neither taper cracks nor very closed cracks, whereas AUT detects both of them. 3) AUT can detect at once plane defects like cracks and spheroidal defects like blowholes.

  • PDF