• Title/Summary/Keyword: Planar motor

Search Result 57, Processing Time 0.032 seconds

The characteristics Analysis of Halbach Planar Motor which has a High Energy density (고 에너지 밀도를 갖는 Halbach Planar Motor 특성해석)

  • Zhou, Jian-Pei;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.127-129
    • /
    • 2006
  • In this paper, a synchronous permanent magnet planar motor (SPMPM) with Halbach array is proposed for its high energy density. The magnetization and flux density distribution are obtainedby magnet scalar potential the characteristics such as inductance, back-EMF and thrust are evaluated. It can be concluded that the analysis of SPMPM with Halbach magnet array is credible and feasible.

  • PDF

Study on the Air-bearing Stage Driven by Linear Induction Motors (선형 유도기 구동 방식 공기 베어링 스테이지에 관한 연구)

  • Jung, Kwang-Suk;Shim, Ki-Bon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • Linear induction motor is adopted as an actuator of the planar stage. An inherently poor characteristic at zero or ultra-low speed zone of the induction motor is remarkably improved due to a recent development of power electronic semiconductor technology and a spatial vector control theory. At present, a servo response speed of the induction motor reaches 90 percent of one of PM synchronous or BLDC motor. Specially, as a secondary of the induction motor can be constructed using uniform conducting sheets, there is no periodic force ripple as in PM motors. So, the induction motor can be superior to another driving means under a certain condition. This paper discusses the overall development procedure of non-contact planar stage with a big workspace using linear induction motors.

Accurate Characteristic Analysis of Halbach-Arrayed Planar Motor for Simultaneous Control of Thrust and Normal Force through Analytic Approaches (Halbach Array를 적용한 추진력 및 부상력 동시제어용 Planar Motor의 해석적 기법을 통한 정밀 특성 해석)

  • Kwak, Sang-Yeop;Jung, Sang-Yang;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.679-681
    • /
    • 2002
  • 본 논문에서는 해석적 기법을 적용하여, 추진력과 부상력을 동시 제어하는 Planar Motor의 정밀 특성 해석을 나타내었다. 특히, 본 해석 모델은 가동자의 요크를 제거하기 위한 Halbach Array를 적용하였으며, 이에 대한, 정밀한 특성 해석을 위해 공간고조파 해석법도 제안한다. 또한, 해석해 검증을 위하여 유한 요소해석법에 의한 결과와 비교 분석을 하며, 이를 토대로 한 해석 모델의 동작 특성을 살펴본다.

  • PDF

The Characteristics Analysis of X-Y Planar Motor with New Permanent Magnet Array (새로운 영구자석 배열에 의한 X-Y평면 모터의 특성해석)

  • Huang, Rui;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.124-126
    • /
    • 2006
  • In this paper, a synchronous permanent magnet planar motor (SPMPM) with new permanent magnet array is proposed and the magnetic field distribution is obtained analytically by using magnetic scalar potential. Compared to those of Asakawa, Chitayat and experimental data, the superiority and feasibility of the novel magnet array are verified. The characteristics of the synchronous permanent magnet planar motor with this novel magnet array such as inductance, back-EMF, and force are calculated by analytical method.

  • PDF

Normal Force Minimization of the Synchronous Permanent Magnet Planar Motor with Halbach Magnet Array (Halbach 배열 영구자석형 Planar Motor의 수직력 최소화)

  • Kim, Duk-Hyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.582-588
    • /
    • 2006
  • This paper presents the characteristics analysis and normal force minimization of a synchronous permanent magnet planar motor(SPMPM) with Halbach magnet way. Firstly, the flux density distribution is calculated by analytical method; then, the characteristics of this SPMPM are evaluated, some experiments have been done to verify the analysis propriety and to investigate the interaction among the characteristics; At last, the normal force is minimized by using genetic algorithm and it is decreased from 672.83[N] to 144.24[N] remarkably.

The optimum design of permanent magnet array for improvement characteristics in planar motor (Planar Motor의 특성향상을 위한 영구자석 배열 최적화)

  • Huang, Rui;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.837-838
    • /
    • 2006
  • In this paper, a novel permanent magnet array is proposed and the magnetic field distribution is evaluated analytically by using magnetic scalar potential. The characteristics of the synchronous permanent magnet planar motor with this novel magnet array such as inductance, back-EMF, and force are calculated by analytical method. The superiority and feasibility of the novel magnet array are verified by comparing with Asakawa array, Chitayat array, and experiment data. Otherwise, the force is developed form 27.77[N] to 30.37[N] by using the method of genetic algorithm.

  • PDF

Design of Linear XY Stage using Planar Configuration and Linear Motors with Halbach Magnet Array (평면형 구조와 Halbach 자석배열 선형모터를 이용한 리니어 XY 스테이지의 설계)

  • Kim, Ki-Hyun;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • In flat panel display or semiconductor industries, they install the equipments with fine line width and high throughput for fabrication and inspection. The equipments are required to have the linear stage which can position the work-piece with high speed, fine resolution on wide range of motion. In this paper, a precision planar linear XY stage is proposed. The stage has a symmetric planar window configuration and is guided by air-bearings on granite plate. The symmetric planar window configuration makes the stage has robustness against dynamic and thermal disturbances. The air-bearings let the stage move smooth on straight guide bar and flat granite surface. The stage is actuated by linear motor with Halbach magnet array (HMA). HMA generates more confined magnetic flux than conventional array. The linear motors are optimized by using sequential quadratic programming (SQP) with the several constraints that are thermal dissipation, required power, force ripple and so on. The planar linear XY stage with the symmetric planar configuration and the linear motors is implemented and then the performance such as force ripple, resolution and stroke are evaluated.

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Simplified Nonlinear Control for Planar Motor based on Singular Perturbation Theory (특이섭동이론을 기반으로한 평판모터의 비선형 제어)

  • Seo, HyungDuk;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • In this paper, we propose the nonlinear control based on singular perturbation theory for position tracking and yaw regulation of planar motor. Singular perturbation theory is characterized by the existence of slow and fast transients in the system dynamics. The proposed method consists of auxiliary control to decouple error dynamics. We develop model reduction with control input. Also, we derIve decoupled error dynamics with auxiliary input. The controller is designed in order to guarantee the desired position and yaw regulation without current feedback or estimation. Simulation results validate the effect of proposed method.