• Title/Summary/Keyword: Planar Circuits

Search Result 62, Processing Time 0.035 seconds

Silicon/Pad Pressure Measurements During Chemical Mechanical Polishing

  • Danyluk, Steven;Ng, Gary;Yoon, In-Ho;Higgs, Fred;Zhou, Chun-Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.433-434
    • /
    • 2002
  • Chemical mechanical polishing refers to a process by which silicon and partially-processed integrated circuits (IC's) built on silicon substrates are polished to produce planar surfaces for the continued manufacturing of IC's. Chemical mechanical polishing is done by pressing the silicon wafer, face down, onto a rotating platen that is covered by a rough polyurethane pad. During rotation, the pad is flooded with a slurry that contains nanoscale particles. The pad deforms and the roughness of the surface entrains the slurry into the interface. The asperities contact the wafer and the surface is polished in a three-body abrasion process. The contact of the wafer with the 'soft' pad produces a unique elastohydrodynamic situation in which a suction force is imposed at the interface. This added force is non-uniform and can be on the order of the applied pressure on the wafer. We have measured the magnitude and spatial distribution of this suction force. This force will be described within the context of a model of the sliding of hard surfaces on soft substrates.

  • PDF

Partial EBG Structure with DeCap for Ultra-wideband Suppression of Simultaneous Switching Noise in a High-Speed System

  • Kwon, Jong-Hwa;Kwak, Sang-Il;Sim, Dong-Uk;Yook, Jong-Gwan
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.265-272
    • /
    • 2010
  • To supply a power distribution network with stable power in a high-speed mixed mode system, simultaneous switching noise caused at the multilayer PCB and package structures needs to be sufficiently suppressed. The uni-planar compact electromagnetic bandgap (UC-EBG) structure is well known as a promising solution to suppress the power noise and isolate noise-sensitive analog/RF circuits from a noisy digital circuit. However, a typical UC-EBG structure has several severe problems, such as a limitation in the stop band's lower cutoff frequency and signal quality degradation. To make up for the defects of a conventional EBG structure, a partially located EBG structure with decoupling capacitors is proposed in this paper as a means of both suppressing the power noise propagation and minimizing the effects of the perforated reference plane on the signal quality. The proposed structure is validated and investigated through simulation and measurement in both frequency and time domains.

LTCC기술을 활용한 VCO모듈

  • 이영신;유찬세;이우성;강남기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.12-24
    • /
    • 2001
  • The key advantage of LTCC(low temperature co-fired ceramics) technology is the ability to integrate passive components such as resistors, capacitors, and inductors. More compact circuits with an increased scale of integration are needed with the development for advanced telecommunication system such as IMT-2000. LTCC technology can be obtained by removing these elements from the substrate surface to inside of ceramic body. And it can miniaturize the wireless phone through integration of planar patch antenna, duplexer, band pass filter, bias line, circuit of impedance matching and RF choke etc. Futhermore, with the multilayer chip process and its outstanding electrical material characteristics, LTCC is predestined for highly-integrated, cost effective wide band applications. This paper focuses on the general description of LTCC MCM technologies and the fabrication of the multilayer VCO module.

  • PDF

Design of PIFA type Spiral Antenna for Vehicle RKE Reader (차량 RKE 리더기용 PIFA형 스파이럴 안테나의 설계)

  • Oh, Dong-Jun;Yun, Ho-Jin;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • In this paper, the spiral antenna with the center frequencies of 315MHz, 433MHz, and 447MHz for RKE system of a vehicle is designed on PCB. The antenna is microstrip line-fed, and applied PIFA concept near the feeding part to easily tune center frequency and input impedance. The PIFA-type spiral antenna with the size of $30mm{\times}20mm$ is designed on printed PCB by considering the effect of circuits and components on PCB, ECU case and vehicle body. Also chip inductor inserted dual-band spiral antenna of 315MHz and 447MHz is designed. We found that the antenna designed on PCB satisfied the antenna specifications through measurement and field test.

  • PDF

An Antenna-Integrated Oscillator Design Providing Convenient Control over the Operating Frequency and Output Power (동작주파수 및 출력파워 조절이 용이한 신호생성용 안테나 설계)

  • Lee, Dong-Ho;Lee, Jong-In;Kim, Mun-Il
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • A new design for easily controlling operating frequency of an antenna-integrated planar oscillator is introduced. The oscillator circuit of a broadband negative-resistance active part and a passive load including a patch antenna. The patch resonance is used for determining the oscillation frequency. This design reduces the possibility of mismatch between antenna radiation and oscillation frequencies. To achieve optimum output power, load-pull simulation for the negative-resistance circuit is used. The load-pull simulation shows the feed point and the delay of feed line can affect the oscillation power. Two negative-resistance circuits capable of supporting oscillation over full C-band and X-band are fabricated. The oscillation frequency, output power and phase noise for different patch antennas are measured.

  • PDF

A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool (소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구)

  • 이재하;박성령;양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

Sapphire Based 94 GHz Coplanar Waveguide-to-Rectangular Waveguide Transition Using a Unilateral Fin-line taper (평면형 Fin-line 테이퍼를 이용한 사파이어 기반의 94 GHz CPW-구형 도파관 변환기)

  • Moon, Sung-Woon;Lee, Mun-Kyo;Oh, Jung-Hun;Ko, Dong-Sik;Hwang, In-Seok;Rhee, Jin-Koo;Kim, Sam-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.65-70
    • /
    • 2008
  • We design and fabricate the 94 GHz Coplanar waveguide(CPW)-to-rectangular waveguide transition that is transmits signal smoothly between the CPW, which is a popular transmission line of the planar circuits, and rectangular waveguide for the 94 GHz transceiver system. The proposed transition composed of the unilateral fin-line taper and open type CPW-to-slot-line transition is based on the hard and inflexible sapphire for the flip-chip bonding of the planar MMICs using conventional MMIC technology. We optimize a single section transition to achieve low loss by using an EM field solver of Ansoft's HFSS and fabricate the back- to-back transition that is measured by Anritsu ME7808A Vector Network Analyzer in a frequency range of $85{\sim}105$ GHz. From the measurement and do-embedding CPW with 3 mm length, an insertion and return loss of a single-section transition are 1.7 dB and more an 25 than at 94 GHz, respectively.

A Study on Low Power Energy Transfer Circuits of the Non Contact Method by means of Solar Generation (태양광 발전에 의한 비접촉 방식 저 전력 에너지 전송회로에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Jong-Rae;Choi, Gi-Ho;Kim, Jin-Seon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • In this paper, it is about to non-contact wireless power transmission according to various conditions of self induction principle between the two planar coils at a transmission unit and a receiving unit based on the theory of wireless power transmission. The experiments are occurred in order to power transfer of noncontact method from designed wireless circuits in the primely coil and secondary coil, and the applying to Half Bridge Resonant converter transmission unit and receiving unit. and that were able to prepared circumstance to calculate of the output voltage and power source. The main power of the inductive coupling the resonant converter at the transmission unit is converted electrical energy using the solar cell module and artificial light source (halogen lamp) as a replace light and received 24 V power supply from solar power was used a input power source for the wireless power transmission device. Experimental results, to received of power is used to illuminate the lighting and to charge the battery in receiving circuit.And the wireless power transmission efficiency measured at the output side of the transmission unit is obtained about 70% to 89% compared to input power of receiving unit.In addition, efficiency were tested through ID verification method and comparing the phase difference between the voltage when foreign substances interfere with wireless power transmission.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

Refractive Index Control by Dopant for Thick Silica films Deposited by FHD (FHD법에 의해 증착된 실리카막의 도펀트 첨가에 의한 굴절률 제어)

  • 김용탁;서용곤;윤형도;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.589-593
    • /
    • 2003
  • Silica based Planar Lightwave Circuits (PLC) have been applied to various kinds of wave-guided optical passive devices. SiO$_2$ (buffer) and GeO$_2$-SiO$_2$ (core) thick films have been deposited by Flame Hydrolysis Deposition (FHD). The SiO$_2$ films were produced by the flame hydrolysis reaction of halide materials such as SiCl$_4$, POCl$_3$ and BCl$_3$ into an oxy-hydrogen torch. The P concentration increased from 2.0 to 2.8 at% on increasing the POCl$_3$/BCl$_3$ flow ratio. The refractive index increased from 1.4584 to 1.4605 on increasing the POC1$_3$/BC1$_3$ flow ratio from 0.6 to 2.6. The refractive index of GeO$_2$-SiO$_2$ films was controlled by the GeCl$_4$ flow rate. The refractive index increased from 1.4615 to 1.4809 on increasing the GeCl$_4$ flow rate from 30 to 120 sccm.