Similar melody searching is an operation that finds such melodies similar to a given query melody from a music database. In this paper, we address the development of a system that detects plagiarism based on the similar melody searching. We first Propose a novel similarity model that supports alignment as well as shifting. Also, we suggest a method for indexing the features extracted from each melody, and a method for processing plagiarism detection by using the index. By our plagiarism detection system composers can easily searches for such melodies that are similar to their ones from music databases. Through performance evaluation via a series of experiments, we show the effectiveness of our approach. The results reveal that our approach outperforms the sequential-scan-based one in speed up to around 31 times.
KIPS Transactions on Computer and Communication Systems
/
v.3
no.6
/
pp.189-196
/
2014
Though the plagiarism is illegal and should be avoided, it still occurs frequently. Particularly, the plagiarism of source codes is more frequently committed than others since it is much easier to copy them because of their digital nature. To prevent code plagiarism, there have been reported a variety of studies. However, previous studies for plagiarism detection techniques on source codes do not consider the data structures although a source code consists both of data structures and algorithms. In this paper, a plagiarism detection technique for source codes considering data structures is proposed. Specifically, the data structures of two source codes are represented as sets of trees and compared with each other using Hungarian Method. To show the usefulness of this technique, an experiment has been performed on 126 source codes submitted as homework results in an object-oriented programming course. When both the data structures and the algorithms of the source codes are considered, the precision and the F-measure score are improved 22.6% and 19.3%, respectively, than those of the case where only the algorithms are considered.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.6
/
pp.1627-1648
/
2012
We propose an adaptive method for detecting plagiarized pairs from a large set of source code. This method is adaptive in that it uses an adaptive algorithm and it provides an adaptive threshold for determining plagiarism. Conventional algorithms are based on greedy string tiling or on local alignments of two code strings. However, most of them are not adaptive; they do not consider the characteristics of the program set, thereby causing a problem for a program set in which all the programs are inherently similar. We propose adaptive local alignment-a variant of local alignment that uses an adaptive similarity matrix. Each entry of this matrix is the logarithm of the probabilities of the keywords based on their frequency in a given program set. We also propose an adaptive threshold based on the local outlier factor (LOF), which represents the likelihood of an entity being an outlier. Experimental results indicate that our method is more sensitive than JPlag, which uses greedy string tiling for detecting plagiarism-suspected code pairs. Further, the adaptive threshold based on the LOF is shown to be effective, and the detection performance shows high sensitivity with negligible loss of specificity, compared with that using a fixed threshold.
Ji, Jeong-Hoon;Park, Su-Hyun;Woo, Gyun;Cho, Hwan-Gue
International Journal of Control, Automation, and Systems
/
v.6
no.6
/
pp.809-817
/
2008
Program plagiarism is widespread due to intelligent software and the global Internet environment. Consequently the detection of plagiarized source code and software is becoming important especially in academic field. Though numerous studies have been reported for detecting plagiarized pairs of codes, we cannot find any profound work on understanding the underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source codes regarding that the plagiarism procedure can be considered as evolutionary steps of source codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the source code. To this end, we extend the well-known bioinformatics approach, a local alignment approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric code similarity based on the local alignment can be considered as one of the main contribution of this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction algorithm, we conducted experiments with more than 100 real source codes which were obtained from East-Asia ICPC(International Collegiate Programming Contest). Our experiments showed that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny construction algorithm is successfully implemented on top of the plagiarism detection system of an automatic program evaluation system.
Journal of Korea Society of Industrial Information Systems
/
v.22
no.2
/
pp.43-52
/
2017
Pattern Analysis is One of the Most Important Techniques in the Signal and Image Processing and Text Mining Fields. Discrete Fourier Transform (DFT) is Generally Used to Analyzing the Pattern of Signals and Images. We thought DFT could also be used on the Analysis of Text Patterns. In this Paper, DFT is Firstly Adapted in the World to the Sentence Plagiarism Detection Which Detects if Text Patterns of a Document Exist in Other Documents. We Signalize the Texts Converting Texts to ASCII Codes and Apply the Cross-Correlation Method to Detect the Simple Text Plagiarisms such as Cut-and-paste, term Relocations and etc. WordNet is using to find Similarities to Detect the Plagiarism that uses Synonyms, Translations, Summarizations and etc. The Data set, 2013 Corpus, Provided by PAN Which is the One of Well-known Workshops for Text Plagiarism is used in our Experiments. Our Method are Fourth Ranked Among the Eleven most Outstanding Plagiarism Detection Methods.
JavaScript is one of the most popular languages to develope web sites and web applications. Since applicationss written in JavaScript are sent to clients as the original source code, they are easily exposed to plagiarists. Therefore, a method to detect plagiarized JavaScript programs is necessary. The conventional program dependency graph(PDG) based approaches are not suitable to analyze JavaScript programs because they do not reflect dynamic features of JavaScript. They also generate false positives in some cases and show inefficiency with large scale search space. We devise a JavaScript specific PDG(JS PDG) that captures dynamic features of JavaScript and propose a JavaScript plagiarism detection method for precise and fast detection. We evaluate the proposed plagiarism detection method with experiment. Our experiments show that our approach can detect false-positives generated by conventional PDG and can prune the plagiarism search space.
Purpose - The purpose of this paper is to review, analyze, and learn from the most recent cases of plagiarism and to identify and promote ethical practices in research and publication. Research design, data, and methodology - This is a case study, an analytical approach, which focuses on analyzing the most recent cases of plagiarism to identify ethical issues and concerns in journal publication practices. Results - Despite the availability of many software and web-based applications and programs to detect plagiarism, there is no universal or perfect plagiarism detection application available to ease the editorial responsibility. Lack of understanding the concept and ignorance of plagiarism were the main reasons for the cases of plagiarism. Conclusions - Some of the plagiarism cases reveal a lack of knowledge in proper application of in-text citations and references, including quoting, requiting, paraphrasing, and citing sources, etc. Furthermore, the need for recognizing and considering the distorted and falsified primary and secondary research data as plagiarism is essential to enhance ethical practices in journal publication.
Due to its role in maintaining the health of scientific societies, research ethics (or integrity) is notably receiving attention by academia, governments and even individuals who are not engaged in scientific researches. In this paper, I will introduce some valuable papers dealt with plagiarism as a representative research misconduct. In general, researcher's results that will soon be published must meet the crucial scientific criteria: originality, accuracy, reproducibility, precision and research ethics. The definition of plagiarism is "appropriation of another person's ideas, processes, results, or words without giving appropriate credit." Compared to fabrication and falcification, plagiarism is often considered as a minor misconduct. With intentionality, however, plagiarism can be corresponding to 'theft of intellectual product'. The context of plagiarism is not restricted to the stage of publication. It can be extended to prior stages of proposing (i.e. preparing the research proposal) and performing (executing the research), and reviewing (writing the review papers). Duplicate publication is regarded as a self-plagiarism in broad interpretation of plagiarism. To avoid dangers of plagiarism, earnest efforts from all members of scientific community are needed. First of all, researchers should keep 'transparency' and 'integrity' in their scientific works. Editorial board members and reviewers should keep fairness and well-deserved qualification. Government and research foundations must be willing to provide sufficient financial and policy support to the scientific societies; Up-graded editorial services, making good use of plagiarism detection tools, and thorough instruction on how to write a honest scientific paper will contribute to building up a healthy basis for scientific communities.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.413-415
/
2006
디지털 시대에는 누구나 쉽게 정보에 접근 할 수가 있어 아주 간단하게 다른 사람의 정보를 불법 복제해서 무단으로 사용하는 경우가 증가하게 되었다. 이는 많은 투자와 노력으로 지식을 생성하는 일도 중요하지만 이를 관리하고 보호하는 일이 중요한 과제로 부상하고 있다는 것을 의미한다. 본 논문에서는 다른 사람의 지적 재산권을 침해하고 표절을 하여 사용했을 경우 이를 효과적으로 탐지하는 새로운 방법과 이론을 제시하고자 한다.
Studies on software plagiarism detection, prevention and judgement have become widespread due to the growing of interest and importance for the protection and authentication of software intellectual property. Many previous studies focused on comparing all pairs of submitted codes by using attribute counting, token pattern, program parse tree, and similarity measuring algorithm. It is important to provide a clear-cut model for distinguishing plagiarism and collaboration. This paper proposes a source code clustering algorithm using a probability model on extreme value distribution. First, we propose an asymmetric distance measure pdist($P_a$, $P_b$) to measure the similarity of $P_a$ and $P_b$ Then, we construct the Plagiarism Direction Graph (PDG) for a given program set using pdist($P_a$, $P_b$) as edge weights. And, we transform the PDG into a Gumbel Distance Graph (GDG) model, since we found that the pdist($P_a$, $P_b$) score distribution is similar to a well-known Gumbel distribution. Second, we newly define pseudo-plagiarism which is a sort of virtual plagiarism forced by a very strong functional requirement in the specification. We conducted experiments with 18 groups of programs (more than 700 source codes) collected from the ICPC (International Collegiate Programming Contest) and KOI (Korean Olympiad for Informatics) programming contests. The experiments showed that most plagiarized codes could be detected with high sensitivity and that our algorithm successfully separated real plagiarism from pseudo plagiarism.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.