• 제목/요약/키워드: Piping thinning

검색결과 100건 처리시간 0.025초

직관 배관의 국부 감육결함에 대한 건전성 평가 모델 (Integrity Evaluation Model for a Straight Pipe with Local Wall Thinning Defect)

  • 박치용;김진원
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.734-742
    • /
    • 2005
  • The present study proposes the integrity evaluation model for a straight pipe with local wall thinning defect, which reflects the characteristics of training shape and loading condition in the Piping of nuclear power plant. For this purpose, a series of finite element analyses are performed under various defect geometries and loading conditions, and real pipe experiment data performed previously is employed. The model includes the effect of thinning length as well as thinning depth and width, and also it considers the combined loading effect between internal pressure and bending moment. The proposed model has been validated using the results of finite element analysis and pipe experiment data. The results indicate that the proposed model provides more reliable predictions of pipe failure than the current existing model, in terms of accuracy, consistency, and conservativeness of results.

저압 급수가열기 추기노즐 주변 동체의 감육 완화에 관한 연구 (A Study on the Relief of Shell Wall Thinning around the Extraction Nozzle of Low Pressure Feedwater Heater)

  • 서혁기;박상훈;김형준;김경훈;황경모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2631-2636
    • /
    • 2008
  • The most components and piping of the secondary side of domestic nuclear power plants were manufactured carbon-steel and low-alloy steel. Flow accelerated corrosion leads to wall thinning (metal loss) of carbon steel components and piping exposed to the flowing water or wet steam of high temperature, pressure, and velocity. The feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which increases as operating time progress. Several nuclear power plants in Korea have also experienced wall thinning damage in the shell wall around the impingement baffle. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the experimental results based on down-scaled experimental facility. The experiments were performed based on several types of impingement baffle plates which are installed in low pressure feedwater heater.

  • PDF

내부 감육 배관의 손상압력 평가 모델 개발 (Development of Failure Pressure Evaluation Model for Internally Well Thinned Piping Components)

  • 나만균;박치용;김진원
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.947-954
    • /
    • 2005
  • The purpose of this study is to develop failure pressure evaluation models, which are applicable to straight pipes and elbows containing an internally wall thinning defect induced by flow-accelerated-corrosion (FAC). In this study, thus, three dimensional finite element (FE) analyses are performed to investigate the dependences of failure pressure of internally wall thinned pipe on the defect shape, the pipe geometry, and the defect location and bend radius of elbow. Also, the existing failure pressure assessment models for externally wall thinned pipes are examined. Based on these, the new models for assessing failure pressure of piping components with an internally wall thinning defect are proposed. Comparison of failure pressure, predicted by proposed models, with FE analysis result shows good agreement regardless of pipe type, defect shape, and defect location and bend radius.

감육배관의 건전성평가 및 정비 관련 기술기준 고찰 (Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe)

  • 이성호;이요섭;김홍덕;이경수;황경모
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

원자력 발전소 배관 감육 측정데이터의 개선된 전처리 방법 개발 (Development of the Modified Preprocessing Method for Pipe Wall Thinning Data in Nuclear Power Plants)

  • 문성빈;이상훈;오영진;김성렬
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.146-154
    • /
    • 2023
  • In nuclear power plants, ultrasonic test for pipe wall thickness measurement is used during periodic inspections to prevent pipe rupture due to pipe wall thinning. However, when measuring pipe wall thickness using ultrasonic test, a significant amount of measurement error occurs due to the on-site conditions of the nuclear power plant. If the maximum pipe wall thinning rate is decided by the measured pipe wall thickness containing a significant error, the pipe wall thinning rate data have significant uncertainty and systematic overestimation. This study proposes preprocessing of pipe wall thinning measurement data using support vector machine regression algorithm. By using support vector machine, pipe wall thinning measurement data can be smoothened and accordingly uncertainty and systematic overestimation of the estimated pipe wall thinning rate data can be reduced.

감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가 (Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load)

  • 안석환;남기우;김선진;김진환;김현수;도재윤
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

CHECWORKS와 ToSPACE 프로그램의 배관감육 해석결과 비교 (Comparison of Wall Thinning Analysis Results between CHECWORKS and ToSPACE)

  • 황경모;윤훈;서혁기
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.317-323
    • /
    • 2018
  • Assumptions have always been that wall thinning on the secondary side piping in nuclear power plants is mostly caused by Flow-Accelerated Corrosion (FAC). Recent studies have showed that wall thinning on the secondary side piping is caused by Liquid Droplet Impingement Erosion (LDIE), Solid Particle Erosion (SPE), cavitation, and flashing. To manage those aging mechanisms, several software such as CHECWORKS, COMSY, and BRT-CICERO have been used in nuclear power plants. Korean nuclear power plants have been using the CHECWORKS program since 1996 to date. However, many site engineers have experienced a lot of inconveniences and problems in using the CHECWORKS program. In order to work through the inconveniences and to remedy problems, KEPCO-E&C has developed a "3D-based pipe wall thinning management program (ToSPACE)" based on the experience of over 30 years in relation to the pipe wall thinning management. This study compares the results of FAC and LDIE analysis using both the CHECWORKS and ToSPACE programs with respect to validation of the wall thinning analysis results.

탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계 (Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping)

  • 김경훈;황경모;강덕원
    • 대한기계학회논문집B
    • /
    • 제35권7호
    • /
    • pp.717-722
    • /
    • 2011
  • 본 연구의 목적은 국부감육이 일어나고 있는 위치들을 분석하고, 그와 관련된 난류매개변수를 밝혀내는데 있다. 축소 제작된 배관계 티부분에서의 실험과 수치해석이 이루어졌으며, 실제로 배관계 부품내에서의 유동특성을 유추하기 위하여 그 결과들이 비교 검토되었다. 국부감육율과 난류 매개변수간의 상관관계를 결정하기 위하여 급수가열기 주 배관에서의 티 부품에 대한 수치해석이 수행되었고, 실제적인 국부감육 발생 위치를 찾아내기 위해 알칼리 금속염을 사용하여 감육 유로가시화 실험을 수행하였으며, 이를 기초로 한 난류매개 변수와 국부감육의 두께가 비교 분석되었다. 이러한 결과 값 비교를 통하여 얻어낸 바로는 기하학적 형태에 기인하는 배관 벽면에서의 박리로 인한 반경 방향 유속 Vr이 국부 감육 현상과 가장 연관성이 높은 것으로 나타났다.

ESPI 를 이용한 곡관 감육 결함부의 변형률 분포 측정 (Strain Distribution Measurement for Wall Thinning Defect in Pipe Bends by ESPI)

  • 아흐터나심;김경석;정성욱;박종현;최정석;정현철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.120-125
    • /
    • 2007
  • Put Abstract text here The strain distribution measurement for wall thinned pipe bends by ESPI is presented. Defect types observed in the steel piping in the nuclear power plants (NPP) are the crack at the weld part and the wall thinning defect in the pipe bends. Especially, the wall thinning defects in the pipe bends due to the flow-accelerated corrosion (FAC) is a main type of defects observed in the carbon steel piping system. ESPI is one of the optical non-destructive testing methods and can measure the stress and the strain distribution of the object subjected by the tensile loading or the internal pressure. In this paper, the strain distribution of the wall thinned pipe bends due to the internal pressure will be measured by ESPI technique and the results are discussed. From the results, the size of the wall thinning defect can also be measured approximately.

  • PDF