• 제목/요약/키워드: Piping Materials

검색결과 205건 처리시간 0.023초

바닥보호공의 투수성을 고려한 방조제의 침투류해석 (Seepage analysis on seadike by considering permeability of the rubble base)

  • 조재홍;김서룡;장웅희;노종구
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.491-498
    • /
    • 2002
  • The rubble base in the seadike structure is construct with rubble-mound of big size for stability of seadike against a tidal current velocity at the closing. The permeability gives an effect to stability of seadike a lot in The case which rubble base is founded long with a lake direction like objective area of this study. The permeability of the rubble base produced in the model test regarding filling condition and materials of the rubble base, It applied the result which it tests in seepage analysis and it analyzed a stability of piping, In this study, it diminishes the permeability of the rubble base to respect, the pit soil more the dredge soil is effective and it was analyzed with the fact that it increases the stability of lake direction slope against the piping.

  • PDF

직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향 (Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping)

  • 유영준;김영진
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Validation of applicability of induction bending process to P91 piping of prototype Gen-IV sodium-cooled fast reactor (PGSFR)

  • Tae-Won Na;Nak-Hyun Kim;Chang-Gyu Park;Jong-Bum Kim;Il-Kwon Oh
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3571-3580
    • /
    • 2023
  • The application of the induction bending process to pipe systems in various industrial fields is increasing. Recently, efforts have also been made to apply this bending process to nuclear power plants because it can innovatively reduce welded parts of the curved pipes, such as elbows. However, there have been no cases of the application of induction bending to the piping of nuclear power plants. In this study, the applicability of the P91 induction bending piping for the sodium-cooled fast reactor PGSFR was validated through high temperature low cycle fatigue tests and creep tests using P91 induction bending pipe specimens. The tests confirmed that the materials sufficiently satisfied the fatigue life and the creep rupture life requirements for P91 steel at 550 ℃ in the ASME B&PV Code, Sec. III, Div. 5. The results show that the effects of heating and bending by the induction bending process on the material properties were not significant and the induction bending process could be applicable to piping system of PGSFR well.

ERW 용접 전후 API X70 라인파이프강의 미세조직과 기계적 특성 변화 (Effect of Electrical Resistance Welding on Microstructure and Mechanical Properties of API X70 Linepipe Steel)

  • 오동규;최예원;신승혁;정한길;곽진섭;황병철
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.185-192
    • /
    • 2022
  • Variations in the microstructure and mechanical properties of API X70 steel processed by piping, electrical resistance welding (ERW), and post seam annealing (PSA) are investigated in this study. In the welding zone, some elongated pearlites are formed and grains coarsening occurs due to extra heat caused by the ERW and PSA processes. After the piping, the base metal shows continuous yielding behavior and a decrease in yield and impact strengths because mobile dislocation and back stress are introduced during the piping process. On the other hand, the ERW and PSA processes additionally decreased the impact strength of welding zone at room and low temperatures because some elongated pearlites easily act as crack initiation site and coarse ferrite grains facilitate crack propagation. As a result, the fracture surface of the welding zone specimen tested at low temperature revealed mostly cleavage fracture unlike the base metal specimen.

REVIEW OF DYNAMIC LOADING J-R TEST METHOD FOR LEAK BEFORE BREAK OF NUCLEAR PIPING

  • Oh, Young-Jin;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.639-656
    • /
    • 2006
  • In order to apply the leak before break (LBB) concept to nuclear piping systems, the dynamic strain aging effect of low carbon steel materials has to be taken into account, in compliance with the requirements of the Korean Standard Review Guide (KSRG) 3.6.3-1. For this goal, J-R tests are needed for a range of various temperatures and loading rates, including dynamic loading conditions. In the dynamic loading J-R test, the unloading compliance method can not be applied to measure the crack growth and direct current potential drop (DCPD) method; this method also has a problem defining the crack initiation point. The normalization method is known as a very useful method to determine the J-R curve under dynamic loading because it does not need additional equipment or complicated loading sequences such as electric current or unloading. This method was accepted by the American Society for Testing and Materials (ASTM) as a standard test method E1820 A15 in 2001. However, it has not yet been clearly verified yet if the normalization method is sufficiently reliable to be applied to LBB. In this study, the basic background of the J-integral, LBB and dynamic loading J-R test are explained, and the current status for dynamic loading J-R test methods are reviewed from the view point of LBB for nuclear piping. In particular, the theoretical and historical background of the normalization method which has received attention recently, is summarized. Recent studies for this method are introduced and future works are suggested that may improve the reliability of LBB for nuclear piping.

우리나라 하천제방에 대한 내부침식 파괴 연구 : 사례연구 (River Embankment Stability against Hydraulic Piping Failure in Korea)

  • 권교근;한상현
    • 대한토목학회논문집
    • /
    • 제26권1C호
    • /
    • pp.33-42
    • /
    • 2006
  • 우리나라 하천 제방은 유래를 알 수없는 오래 된 것이 많고 당시 공학적 배경 없이 주변에서 손쉽게 얻을 수 있는 재료를 사용하여 제방을 축조하였기 때문에 근본적으로 많은 문제점을 내포하고 있다. 현재에 와서는 제체가 노후화 되고 최근 기상이변으로 인해 제방의 안전이 더욱 크게 위협받으면서 제방단면을 증대시키거나 수리시설을 전폭 재검토하는 등 설계 보완적 측면의 여러 가지 대책방안이 수립되고 있다. 그러나 제방을 신설하거나 기존단면을 보수 또는 단면을 증대함에 있어 재료특성을 제대로 반영하지 못하고 아직도 단편적인 설계기준을 전면 적용하거나 획일적인 다짐 시공관리 기준을 적용하는 정도로 그치는 경우도 있다. 따라서 본 검토에서는 제체의 재료특성에 주안점을 두어 Sherard(1953)가 제안한 균열 및 파이핑 저항등급을 소개, 이를 실제 파이핑이 발생한 국내 하천제방에 적용한 결과를 제시하고 유한요소법에 의한 침투해석을 실시하여 현행 설계기준에 의한 안정검토 결과와 비교해 보았다. 검토결과, 두 방법 모두 파이핑이 발생하는 것으로 평가되었으나 파이핑 저항등급은 다짐의 영향이 고려되어야 하고, 입도기준의 경우 주어진 재료의 입도와 제안된 입도기준과의 일치도를 정량적으로 제시하기 어려운 문제점을 보여 이에 대한 보완이 필요할 것으로 판단되었다.

화력발전 소재 및 제조기술 개발 (Development trend of material and manufacturing process for fossil power generation)

  • 이경운;공병욱;김민수;강정윤
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.141-148
    • /
    • 2016
  • This paper presents an overview of worldwide electric power development and National $700^{\circ}C$ Hyper Supercritical coal-fired power generation(HSC) focus on materials and manufacturing process. To Increase the efficiency of electric power generation, It is necessary to increase steam temperature and pressure. In that case, New material and manufacturing process shall be developed for boiler and turbine component in high temperature and pressure operating condition. Therefore, Much Efforts in worldwide are progressing to develop materials and manufacturing technology and to build and operate an HSC.

소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측 (Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures)

  • 김재윤;서기완;김윤재;김기석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.117-129
    • /
    • 2023
  • Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.

CANDU형 원전 2차 배관의 침부식 감육 관리방법에 관한 연구 (A Study on Managing of Metal Loss by Flow-Accelerated Corrosion in the Secondary Piping of CANDU Nuclear Plants)

  • 심상훈;송정수;윤기봉;황경모;진태은;이성호
    • 에너지공학
    • /
    • 제11권1호
    • /
    • pp.18-25
    • /
    • 2002
  • 침부식 (FAC, Flow-Accelerated Corrosion)에 의한 감육 문제는 원자력 발전소 배관관리에 있어서 매우 중요하다. 특히 FAC는 배관 내부 유체의 pH, 용존산소 농도, 유체 온도, 유속 및 습증기 분율 등과 배관의 형상 및 재료 등의 특정 조건에서만 발생하므로, FAC 문제를 관리하기 위해서는 체계적인 접근이 필요하다. 본 연구에서는 국내 특정 CANDU원전의 2차계통 배관을 대상으로 관련 데이터베이스 구축, 구축된 데이터베이스를 이용한 FAC감육율의 예측 및 배관 잔여수명의 평가 등을 수행하였다. 또한 FAC 발생기구 및 FAC에 영향을 주는 요인에 대해서도 조사하였다. 습분분리기와 플래시탱크 사이 배관 라인의 해석 예로부터 FAC 문제를 관리하는 방안을 제시하였다. 제시된 방안은 국내 다른 원자력발전소의 배관 관리에도 활용될 수 있을 것이다.