• 제목/요약/키워드: Pipe systems

Search Result 793, Processing Time 0.028 seconds

A Study on the Safety Improvement in Incineration System from the Case Study of Acrylic acid manufacturing process Accident (아크릴산 제조공정 사고사례를 통한 소각 시스템의 안전성 향상 방안)

  • Ma, Byung-Chol;Lee, Keun-Won;Im, Ji-Pyo;Kim, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.52-58
    • /
    • 2012
  • Recently, waste gas incineration is increasing due to strong environmental regulatory system in Korea. These incinerating facilities are usually connected with the top of the storage tank through pipeline and incinerate off gas with the flame. Therefore, the flame originated from these facilities is likely to move back into pipeline and might cause an explosion of the storage tank. Accordingly, the purpose of this study is to suggest the preventive measures and the way to improve the safety of these incineration systems through the cause analysis of a major industrial accident occurred in a acrylic acid manufacturing process in Korea. As a result of the study, the preventive measures are suggested as follows. (1) Air or inert gas inflow facilities should be well designed to dilute flammable gases into air or inert gas sufficiently before the blower is restarted in order to prevent the explosion (2) It is needed for the detonation-type flame arresters to be installed on the top of the storage tanks. (3) In case of using the deflagration-type flame arresters, it is necessary to install a rupture disk before the arresters, or blow off the flame outside tanks by connecting the tank top and the incinerator with hood-type pipe. (4) TDR should be installed to be restarted automatically after the momentary power failure.

Thermal-hydraulic behaviors of a wet scrubber filtered containment venting system in 1000 MWe PWR with two venting strategies for long-term operation

  • Dong, Shichang;Zhou, Xiafeng;Yang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1396-1408
    • /
    • 2020
  • Filtered containment venting system (FCVS) is one of the severe accident mitigation systems designed to release containment pressurization to maintain its integrity. The thermal-hydraulic behaviors in FCVSs are important since they affect the operation characteristics of the FCVS. In this study, a representative FCVS was modeled by RELAP5/Mod3.3 code, and the Station BlackOut (SBO) was chosen as an accident scenario. The thermal-hydraulic behaviors of an FCVS during long-term operation with two venting strategies (open-and-close strategy, open-and-non-close strategy) and the sensitivity analysis of important parameters were investigated. The results show that the FCVS can operate up to 250 h with a periodic open-and-close strategy during an SBO. Under the combined effects of steam condensation and water evaporation, the solution inventory in the FCVS increases during the venting phase and decreases during the intermission phase, showing a periodic pattern. Under this condition, the appropriate initial water level is 3-4 m; however, it should be adjusted according to the environment temperature. The FCVS can accommodate a decay heat power of 150-260 kW and may need to feed water for a higher decay heat power or drain water for a lower decay heat power during the late phase. The FCVS can function within an opening pressure range from 450 kPa to 500 kPa and a closing pressure range between 250 kPa and 350 kPa. When the open-and-non-close strategy is adopted, the solution inventory increases quickly in the early venting phase due to steam condensation and then decreases gradually due to the evaporation of water; drying-up may occur in the late venting phase. Decreasing the venting pipe diameter and increasing the initial water level can mitigate the evaporation of the scrubbing solution. These results are expected to provide useful references for the design and engineering application of FCVSs.

A Study on the Treatment of Combustible Wastes and the Resource Recovery by Pyrolysis (熱分解에 의한 可燃性 廢棄物의 처리 및 資源回收에 관한 연구)

  • Kim, Sam-Cwan;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.17-33
    • /
    • 1987
  • As a result of technical advances and industrialization, the characteristics of domestic and industrial wastes are becoming more complex. Accordingly, improved treatment and disposal systems are being continuously sought to take account of complex characteristics and to comply with economic restrictions. In this study, an application of pyrolysis to the treatment of industrial wastes, including waste scrap rubber, waste raw material used in making the slipper bottom and waste PVC pipe, and the effectiveness of pyrolysis in resource recovery from these wastes were investigated. Batches of wastes were pyrolysed by external heating to a temperature of 400-800$\circ$C in a 32 mm diameter x 0.9 m long silica tube to produce combustible gases, oils and chars. Before the start of pyrolysis runs, the entire system was purged with nitrogen gas to exclude the air. The temperature inside the retort was controlled by the thermocouple in the gas stream, and referred to as the pyrolysis temperature. Under these conditions three products were separately collected and further analyzed. The results were summarized as follows. 1. More gases and less chars were produced with higher pyrolyzing temperature and with higher rates of heating, but the yields of oils tended downwards at temperatures above 700$\circ$C. Accordingly, operating conditions of pyrolysis should be varied with desired material. 2. Calorific values and sulfur contents of produced oils were sufficient and suitable for fuel use. Chars from waste rubber had high heating values with low sulfur contents, but calorific values of chars from waste PVC and waste slipper were as low as 3, 065-4, 273 kcal/kg and 942-2, 545 kcal/kg, respectively. Therefore, char from these wastes are inappropriate for fuel. 3. Soluble contents of Pb, Cd, Cu and Zn in chars from waste rubber and waste slipper were below the Specific Hazardous Waste Treatment Standards. However soluble contents of Pb and Cd in chars from waste PVC were one or two times and five or seven times exceedingly the Specific Hazardous Waste Treatment Standards, respectively. 4. Post high heating is desirable for treatment method of waste PVC which generates toxic hydrogen chloride. 5. The proportions of hydrogen, methane and ethane in produced gases were in the range of 3.99-35.61% V/V, 18.22-32.50% V/V and 5.17-5.87% V/V, respectively. 6. Pyrolysis is a useful disposal method in case of waste slipper, which was hardly combustible, and thus investigations of this kind of materials are required for effective management of industrial waste. 7. Based upon the possible market development for products, overall pyroly economics to take account of treatment values of noncombustible or hazardous materials should be evaluated.

  • PDF

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

The Primary Structure Controlled Mineralization in Weolseong Diatreme, Southern Korea (월성(月城) 다이아튜림의 층준(層準)에 따른 광화(鑛化) 현상(現狀))

  • Park, Ki-Hwa;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1987
  • The Nokdong As-Zn deposit, located 28 km south of Kyeongju City, Southern Korea, has been investigated by a deep drilling programme. The mineralized zone is roughly 290m long and 180m wide at surface and is hosted in a pipe diatreme infilled with poor to well bedded felsic volcaniclastics. The diatreme was formed by explosive volcanic activity, of probably early Tertiary age, subsequent hydrothermal alteration and mineralization took place concurrently within stratigraphic layers in diatreme. Coarse volcaniclastics in the center part of the diatreme, together with complex systems of fracturing, acted as pathways for late hydrothermal fluids which caused alteration of volcanic material to sericite, chlorite and carbonate and precipitated ore minerals, quartz and calcite in the voids. Porosity and permeability were key factors in determining which portions of the layered diatreme were mineralized. The lower part of certain layers retained a relatively high porosity and were extensively mineralized. Metallic mineralization, consisting mostly of pyirte, sphalerite and arsenopyrite, is found as disseminations, tuff-breccia filling and veins.

  • PDF

Thermal stability of surface modified Ni-Cr-alloys in molten FLiNaK salt (표면처리된 Ni-Cr계 합금의 FLiNaK 용융염 하에서의 고온 안정성)

  • Kwang, Hyun Cho;Bang, Hyun;Lee, Tae Suk;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Inconel 617 and Hastelloy X are the most promising candidate materials for the heat exchanger of next generation nuclear reactor. Surface coating and its effects on high temperature properties for the Inconel 617 and Hastelloy X under molten FLiNaK (LiF-NaF-KF) salt environment have been investigated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods of an arc discharge and a sputtering were applied, respectively. A study for the thermal stability of the surface modified Ni-Cr alloy substrates has been conducted. To evaluate the corrosion mechanism of Ni-Cr alloys in the molten salt, a ruptured Inconel pipe used for the molten salt transportation has been analyzed. The thermal properties of morphological and structural properties each sample were characterized before and after heat-treatment at $600^{\circ}C$ in molten FLiNaK salt. The results showed that the TiAlN and $Al_2O_3$ overlay coated specimens had the enhanced high temperature stability.

Growth of Green Pepper(Capsicum annuum L.) in a Plastic Greenhouse Covered with Anti-dropping Plasma Film (방적성 Plasma 처리 필름으로 피복된 플라스틱온실의 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kim, Jin-Young;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.156-160
    • /
    • 2000
  • The Plasma film treated with a high electric voltage was developed to enhance flow down of condensation drops on inside plastic film. Arch type greenhouse framed with iron pipe of 25mm diameter defand 1.5mm thickness were covered with either the developed plasma film or surfactant film(control). Green pepper seedlings raised for 40 days in plug trays were transplanted at a density of 110cm by 30cm in each greenhouse. The mount of condensational water on film surface, generated by 7$0^{\circ}C$ water bath chimney systems and flew down, was collected and measured. The amount of collected water after 150 minutes was 2.56 mL.100c $m^{-2}$ and 0.94mL.100c $m^{-2}$ , respectively, in the plasma film and surfactant film-covered greenhouses. The amount of condensational water drops attached on the cover at 08:20 a.m. at 60 days filter covering was 0.34mL.100c $m^{02}$ and 0.32mL.100c $m^{-2}$ , respectively, in the plasma film- and surfactant film-covered greenhouses. Solar irradiance transmitted into greenhouse was 2.0% higher in the greenhouse covered with the plasma film tan that in the greenhouse covered with the surfactant film. Air temperature in the plasma film-covered greenhouse was higher than the surfactant film-covered greenhouse by 0.5$^{\circ}C$. However, there was no difference in relative humidity between the two greenhouse. Plant height, leaf area, dry weight and early yield showed no significant differences.s.

  • PDF

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

A Study on the Amendments of the Cathodic Protection Criteria Considering IR Drops (전압강하를 고려한 전기방식 기준 개정에 관한 연구)

  • Ryou, Young-don;Lee, Jin-han;Jo, Young-do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.50-57
    • /
    • 2016
  • According to the urban gas business legislation, cathodic protection systems should be applied for buried steel gas pipelines to prevent corrosion. In advanced countries including United States, the criteria for Cathodic Protection Potential is at least -850mV with respect to a saturated copper/copper sulfate electrode(CSE) when the CP applied, and the IR drops must be considered for valid interpretation. However, the IR drop through the pipe to soil boundary has been neglected in Korea. According to KGS code, a reference electrode must be placed in proximity to gas pipelines possible when measuring the CP potential. In this study, we have installed several solid reference electrodes around the buried pipeline(1.2m depth), lower surface(0.5m depth), and the surface individually in order to measure the CP potentials through the each reference electrode and find out the IR drops according to the location of each reference electrode. We have found the IR drop is the greatest when measuring the CP potential through the electrode placed on the ground and the IR drop is the smallest through the electrode installed near pipeline. Therefore, we have suggested the solid reference electrode should be installed as close as possible to buried pipeline in order to measure the correct CP potential without IR drop. We have also suggested the amendment of CP criteria considering IR drop.

Development of a System Dynamics Model for the Efficient Operation and Maintenance of Sewerage Systems (하수도 시스템의 효율적인 운영 및 유지관리를 위한 시스템다이내믹스 모형의 개발)

  • Park, Su-Wan;Lee, Tae-Geun;Kim, Bong-Jae;Kim, Tae-Young
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.101-111
    • /
    • 2012
  • In this paper, the feedback loop mechanisms among the operational indices and exogenous variables of a sewerage system that are inherent in the operation and maintenance of a sewerage system were identified using the System Dynamics (SD) modeling methodology. The identified feedback loops were used to develop a SD computer simulation model that can be used to predict future operational conditions of a sewerage system and identified the efficient ways of operation. The data of Busan metropolitan city sewerage system was applied to verify the developed SD model and predict future operational conditions of the system. As a result, it was predicted that sewage treatment efficiency, volume of sewage treatment and cost recovery rate will be gradually increased, whereas service rate which was already very close to the target will remain almost the same as the current value. Furthermore, sensitivity analysis concerning some operational indices was performed in order to discover the policy leverage. As a result, it was found that the exogenous variables related to the pipe maintenance had a great effect on facility using rate, volume of sewage treatment as well as sewage treatment efficiency.