• Title/Summary/Keyword: Pipe failure

Search Result 353, Processing Time 0.026 seconds

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

Prognostics for Industry 4.0 and Its Application to Fitness-for-Service Assessment of Corroded Gas Pipelines (인더스트리 4.0을 위한 고장예지 기술과 가스배관의 사용적합성 평가)

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.649-664
    • /
    • 2017
  • Purpose: This paper introduces the technology of prognostics for Industry 4.0 and presents its application procedure for fitness-for-service assessment of natural gas pipelines according to ISO 13374 framework. Methods: Combining data-driven approach with pipe failure models, we present a hybrid scheme for the gas pipeline prognostics. The probability of pipe failure is obtained by using the PCORRC burst pressure model and First Order Second Moment (FOSM) method. A fuzzy inference system is also employed to accommodate uncertainty due to corrosion growth and defect occurrence. Results: With a modified field dataset, the probability of failure on the pipeline is calculated. Then, its residual useful life (RUL) is predicted according to ISO 16708 standard. As a result, the fitness-for-service of the test pipeline is well-confirmed. Conclusion: The framework described in ISO 13374 is applicable to the RUL prediction and the fitness-for-service assessment for gas pipelines. Therefore, the technology of prognostics is helpful for safe and efficient management of gas pipelines in Industry 4.0.

A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow (기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구)

  • Jun, Gu-Sik;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

Development and Applications of a Methodology and Computer Algorithms for Long-term Management of Water Distribution Pipe Systems (상수도 배수관로 시스템의 장기적 유지관리를 위한 방법론과 컴퓨터 알고리즘의 개발 및 적용)

  • Park, Suwan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.356-366
    • /
    • 2007
  • In this paper a methodology is developed to prioritize replacement of water distribution pipes according to the economical efficiency of replacement and assess the long-term effects of water main replacement policies on water distribution systems. The methodology is implemented with MATLAB to develop a computer algorithm which is used to apply the methodology to a case study water distribution system. A pipe break prediction model is used to estimate future costs of pipe repair and replacement, and the economically optimal replacement time of a pipe is estimated by obtaining the time at which the present worth of the total costs of repair and replacement is minimum. The equation for estimating the present worth of the total cost is modified to reflect the fact that a pipe can be replaced in between of failure events. The results of the analyses show that about 9.5% of the pipes in the case study system is required to be replaced within the planning horizon. Analyses of the yearly pipe replacement requirements for the case study system are provided along with the compositions of the replacement. The effects of water main replacement policies, for which yearly replacement length scenario and yearly replacement budget scenario are used, during a planning horizon are simulated in terms of the predicted number of pipe failures and the saved repair costs.

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin;Zhang, Zhousuo;Guo, Yanfei;Gong, Teng
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.233-242
    • /
    • 2019
  • Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.

A Study on the Real-Time Temperature and Concentration Measurement of Combustion Pipe Flow Field (연소 배관 유동장의 실시간 온도, 농도 측정에 관한 연구)

  • Hong, Jeong Woong;Yoon, Sung Hwan;Jeon, Min Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • Pipe failure due to thermal fatigue and environmental regulations are increasing the importance of pipe monitoring systems in industrial plants. Since most pipe monitoring systems are focus on external crack inspected, it is necessary to temperature and concentration measuring monitoring system inside the pipe. These systems have spatial uncertainty due to sample inspection by one-point measurement. In addition, real-time measurement is not possible due to the limitation of time delay due to contact measurement. In this study, CT-TDLAS (Computed tomography-Tunable diode laser absorption spectroscopy) apply to overcome the limitations of existing methods. Lasers exhibiting an absorption response at a wavelength of 1395 nm were arranged in a lattice pattern on measuring cell. It showed that the inside of the pipe changed to an unstable combustion state over time.

Development of Failure Pressure Evaluation Model for Local Wall-Thinned Elbows Based on Finite Element Analysis (유한요소해석에 기초한 감육곡관 손상압력 평가 모델 개발)

  • Kim, Jin-Weon;Park, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper provides a failure pressure evaluation model for local wall-thinned elbows. In this study, parametric finite element analyses are performed on the elbows containing local wall-thinning defect at their intrados and extrados, and the failure pressures are obtained from the analysis results by applying a local failure criterion that was validated by real-scale pipe tests. An evaluation model including the effects of thinning depth, length, circumferential angle, thinning location, and elbow geometries on the failure pressure is derived based on the evaluated failure pressures. The proposed model agrees well with the results of finite element analyses and reasonably estimates the dependence of failure pressure on the wall-thinning dimensions and elbow geometries. Also, the comparison with experimental data demonstrates that the proposed evaluation model can accurately predict the failure pressure of local wall-thinned elbows.

Investigation of Pitting Corrosion of Copper Heat-Return Pipe in District Heating (지역난방 구리난방환수관의 공식 원인 분석)

  • Keun Hyung Lee;Min Ji Song;Tae Uk Kang;Woo Cheol Kim;Heesan Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2024
  • This work examined pitting corrosion failure of a copper heat-return pipe used in a district heating system. The copper pipe was corroded with a 48% reduction in thickness due to localized corrosion on the inner surface exposed to heating water of 20 ~ 40 ℃. Fe and Si elements as corrosion products were found around pits. Cl element was also observed, which accelerated oxidation of copper inside pits. Cu2O deposits on the pit's bottom surface decreased the pH inside the pit. X-ray diffraction analysis revealed hematite, cuprite, malachite and brochantite as corrosion products. Chemical analysis demonstrated that Fe and Si elements did not exist in the copper, supply water, or heating water, indicating that Fe and Si species might have entered into the pipe from the exterior. These results indicated that pits were initiated due to ion concentration gradient near Fe and Si species. Moreover, the interior of pits had lower pH due to Cl- concentration and Cu2O reactions, which accelerated the pit's growth and led to formation of pinholes. Additionally, we confirmed that the type of pitting corrosion was a complex combination of types I and II based on the HCO3-/SO42- ratio, pH, temperature, and corrosion products.

A Segment-based Minimum Cutset Method for Estimating the Reliability of Water Distribution Systems (상수관망의 신뢰도 산정을 위한 Segment 기반의 Minimum Cutset 방법)

  • Jun, Hwan-Don;Park, Jae-Il;Baek, Chun-Woo;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.735-742
    • /
    • 2007
  • In this study, a methodology which is based on segments and minimum outsets to estimate the reliability of a real water distribution system efficiently and accurately is suggested. The current reliability assessment models based on minimum cutset consider a pipe as only area impacted by a pipe failure which incurs underestimation of pipe failure impact. In contrary, the suggested methodology adopts "segment" and "unintended isolation" with the hydraulic pressure failure area to define the actual service interruption area in a water distribution system due to a pipe failure, which is different from the Previous reliability estimating methodologies. In addition, a minimum cutset is defined as a single segment incurring abnormal operating conditions and the success mode approach is used to account for the probability of multiple failure combinations of minimum outsets. The model considers numbers and locations of on-off valves when the service interruption area is defined. Once the methodology is applied to a real water distribution system, it is possible to define actual service interruption areas and using the defined areas, the reliability of the water distribution system is estimated reliably, compared with the previous reliability assessment methodologies.