• Title/Summary/Keyword: Pipe Weld

Search Result 182, Processing Time 0.048 seconds

Design of Specimen for Weld Residual Stress Simulation (용접 잔류응력 모사를 위한 시편 설계)

  • Kim, Jin-Weon;Park, Jong-Sun;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.67-72
    • /
    • 2008
  • The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe.

  • PDF

Effect of Heat Input on Girth welds properties of High strain steel pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

Detection and Comparison of Surface Defects in Pipe Welds (배관 용접부 표면결함 검출 및 비교)

  • Jung, Yoon-Soo;Gao, Jia-Chen;Ahn, Tae-Hyoung;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • At present, 24 nuclear power plants are in operation nationwide as the main power source responsible for about 27% of Korea's electricity, and five nuclear power plants are currently under construction. Issues of nuclear safety and reliability have always existed, but after the Fukushima accident, ensuring reliability has become an even more important issue for safety. Compared to other kinds of accidents, the initial response after a nuclear accident is more important than any other accident. Prior to accidents, it is important to be able to predict and judge the accident in advance for the sake of prevention. In this research, non-destructive inspection methods for existing pipe welds include radiographic, ultrasonic, magnetic particle practice, and liquid penetration testing. For this experiment, carbon steel pipes like that of the material used in nuclear pipes were adopted, and specimen welded to the flange (Flange) were manufactured. After testing, the weld specimen were not damaged through the infrared thermography (IRT) experiment. This study attempted to improve the safety of carbon steel pipes through a comparative analysis of finite element analysis.

Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants (원전 2차계통수 모사 환경에서 용접배관 감육 특성에 미치는 재료 및 유속의 영향)

  • Kim, Kyung Mo;Choeng, Yong-Moo;Lee, Eun Hee;Lee, Jong Yeon;Oh, Se-Beom;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.245-252
    • /
    • 2016
  • The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.

Effect of Heat Input on Girth Welds Properties of High Strain Steel Pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.25-30
    • /
    • 2009
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.