• Title/Summary/Keyword: Pipe Noise

Search Result 437, Processing Time 0.028 seconds

Rating of Noise Emission by Plumbing system in Bathroom (화장실 배수관에 따른 배수소음 평가)

  • 정진연;이성호;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.923-927
    • /
    • 2003
  • The aim of this study is to investigate the characteristics and quantity of the noise reduction by pipe material, wrapped pipe with glass wool and installed pipe height The characteristics of noise emission from drain-pipes is as follows. The noise reduction pipe in PVC can reduce noise levels in 7-10㏈ and the cast-iron pipe can reduce in 14㏈compared with the normal PVC pipe. In these days, the glass wool was used for preventing the burst and the noise reduction. But the glass wool for wrapping pipe is not effective to the noise reduction. The characteristics of noise emission from various installed pipe height were measured As the ceiling space of the remodeled building was raised, the noise level was troubled by increasing of the vertical pipe length.

  • PDF

A study on the Prediction of the Radiated Noise by Fluid Induced Vibration in the pipe (배관의 표면진동을 이용한 소음예측기법 연구)

  • Yi, Jongju;Pak, Kyunghyon;Jung, Woojin;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.609-614
    • /
    • 2014
  • This study is on the experiment of the pipe noise due to the internal fluid. The straight pipe, the $90^{\circ}$ mitred pipe, rounded $90^{\circ}$ and $1350^{\circ}$ pipe were tested and measured the vibration and noise. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The $90^{\circ}$ mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the use of pipe surface vibration and radiation efficiency shows good agreement with experiment result.

  • PDF

A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration (배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구)

  • Yi, Jongju;Park, Kyunghoon;Jung, Woojin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.

A Study on Noise and Vibration Characteristics of Pipe Structures (파이프 구조물의 소음 및 진동특성 연구)

  • 류봉조;임경빈;이규섭;송영봉;공용식;오부진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.334-337
    • /
    • 2002
  • The paper presents noise and vibration characteristics of three kinds of pipe materials (PVC pipe, cast-iron pipe and newly developed pp pipe). In order to measure structure bone noise, impact force using small balls was applied to earth pipe. It was confirmed that structure bone noise can be reduced by more large damping materials. Also, transmission loss of pipes depending on the frequency ranges was investigated by using sound source through speakers.

  • PDF

An Experimental Study on the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음에 관한 실험적 연구)

  • Heo, Sung-Wook;Je, Hyun-Su;Yang, Soo-Young;Lee, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2066-2070
    • /
    • 2003
  • This experimental study describes the propagation characteristics and suppression of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The experiment is performed through the systematic change of the shock wave Mach number and the geometrical parameters such as the porosity, hole diameter and length of the perforated pipe. The experimental results for the near and far sound field are presented and explained in comparison with those for a straight pipe. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, the noise reduction performance of perforated pipe depends upon the condition of sound field. For the near sound field the perforated pipe has a little performance to suppress the impulse noise, but for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

Shape Design of Construction Equipment Tailpipe for Noise Reduction and Engine Room Cooling (소음 및 엔진룸 냉각개선을 위한 건설기계테일파이프의 형상설계)

  • Kim, Seong-Jae;Yang, Ji-Hae;Kim, Nag-In;Kim, Jou-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.737-740
    • /
    • 2004
  • The interior noise reduction of construction equipment is concerned for improving the driver comfort in this study. From the baseline test, the exhaust noise gives a big contribution to the interior noise of construction equipment. And the detail noise contribution analysis of the exhaust system, the tail pipe, which is for ventilation an engine room hot air to outside, amplify the exhaust noise around operating engine RPM associated with tail pipe structural and cavity resonances. To remove the noise amplifying effects, the tail pipe has to be shorted its length. Even the noise can be attenuated the ventilation flux when using the redesigned tail pipe is reduced than the original one. Thus, a shape change of the tail pipe is additionally needed for increasing the ventilation flux and attenuating the exhaust noise using CFD technique. The CFD results of the tail pipe give a meaning full information what obstructs the ventilation flex in the current design and how changes the tail pipe.

  • PDF

Cabin Noise Reduction of wheel Loader through the Shape Optimization of Tail-Pipe (테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구)

  • Ko, Kyung-Eun;Joo, Won-Ho;Kim, Dong-Hae;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.686-689
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

  • PDF

Cabin Noise Reduction of Wheel Loader through the Shape Optimization of Tail-Pipe (테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구)

  • Ko, Kyung-Eun;Joo, Won-Ho;Kim, Dong-Hae;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1238-1243
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room, however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

Effects of Exhaust Pipe Curvature on the Exhaust Noise of a Diesel Engine (디이젤 엔진에서 排氣管의 屈曲度가 排氣 騷音에 미치는 影響)

  • 문병수;김옥현;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.392-398
    • /
    • 1986
  • It is often occurred that exhaust pipe of an internal combustion engine should be bent due to some geometrical constraints. Especially for automobiles most of exhaust pipes of engines have curvature to avoid rear axles. In this paper effects of pipe curvature on the exhaust noise of a diesel engine have been studied experimentally. Experiments were carried out on a 4-cycle, 2164cc diesel engine. Two types of curvature, circular arc and retangle, were tested. Sound pressure level (SPL) and power spectrum of the exhaust noise were measured by inserting bent pipes of different curvature dimensions into the exhaust pipe at various engine operating conditions. The following results were obtained from this study. Among the engine operating conditions the exhaust noise was affected mainly by engine revolution speed. The noise was reduced by the circular arc bent pipe. The effectiveness of an arc bent pipe on the noise reduction was dominated by its arc angle and the maximum noise reduction was obtained by the angle of 180.deg.. But the noise reduction could not be obtained by the rectangular bent pipe, and at high engine speed the noise was rather increased due to turbulence of exhaust gas.

Propagation Characteristics of the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성)

  • 제현수;양수영;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.168-173
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The pressure amplitudes and directivities of the impulse wave propagating from the exit of perforated pipe with several different configurations are measured and analyzed fur the range of the incident shock wave Mach number between 1.02 and 1.2. In the experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of investigating their propagation pattern. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, it is shown that for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF