• Title/Summary/Keyword: Piezoelectrics

검색결과 49건 처리시간 0.027초

MOD 법에 의한 압전 SBN 박막의 성장 온도 의존성 및 특성 (The dependent of growth temperature of piezoelectric SBN Thin Film by Metal Organic Decomposition Process and their properties)

  • 김광식;장건익;어순철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.382-383
    • /
    • 2006
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150~200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400{\sim}800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding. average grain size about 500~1000 nm influenced by annealing temperature. The piezoelectric properties of prepared SBN thin film, the remanent polarization value(2Pr) and coercive field was $1.2{\mu}C/cm^2$ and 2.15V/cm, respectively.

  • PDF

딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기 (Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method)

  • 김민수;박상식
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

Effect of Internal Bias Field on Poling Behavior in Mn-Doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 Single Crystal

  • Lee, Geon-Ju;Kim, Hwang-Pill;Lee, Ho-Yong;Jo, Wook
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.382-385
    • /
    • 2021
  • Electrical poling is a crucial step to convert ferroelectrics to piezoelectrics. Nevertheless, no systematic investigation on the effect of poling has been reported. Given that the poling involves an alignment of spontaneous polarization, the condition for poling should be different when a material has an internal bias field that influences the domain stability. Here, we present the effect of poling profile on the dielectric and piezoelectric properties in Mn-doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 single crystal with an internal bias field. We showed that both the dielectric permittivity and the piezoelectric coefficient were further enhanced when the poling procedure ends with a field application along the opposite direction to the internal bias field. We expect that the current finding would give a clue to understanding the true mechanism for the electrical poling.

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

Softener 및 Hardener 동시 첨가가 PZT 압전세라믹에 미치는 영향 (Effects of Softener and Hardener Co-doping on Properties of PZT Piezoelectric Ceramics)

  • 이언종;김윤해;이병우
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.81-85
    • /
    • 2010
  • The effects of co-doping with complex dopants of softeners, $La^{+3}$ and/or $Nb^{+5}$, and a hardener, $Fe^{+3}$, on the microstructural and piezoelectric properties of PZT ceramics with a composition of a rhombohedral-tetragonal morphotropic phase boundary, $PbZr_{0.53}Ti_{0.47}O_3$, were investigated. Unlike single-element doping, the complex doping of both the softener and hardener ions led to various compensation effects for the piezoelectric properties of the PZT ceramics. For 0.5 wt.% $La_2O_3$ softener and/or 0.5 wt.% $Nb_2O_5$ doped compositions, there were apparent hardener doping (compensation) effects for an addition of over 1.0 wt.% $Fe_2O_3$. For the $La_2O_3$ and/or $Nb_2O_5$ doped composition, the co-dopant $Fe_2O_3$ addition led to lower kp and $\varepsilon$r, and increased $Q_m$ values. The prepared PZT ceramics modified with complex soft dopants, $La^{+3}$ and $Nb^+$, as well as a hard dopant, $Fe^{+3}$, showed that the piezoelectric properties were stable with the compositional variations, which made it possible to establish piezoelectric performances with higher reliability and reproducibility. The most improved piezoelectric properties of enhanced $Q_m$ with $\varepsilon_r$ remaining higher $k_p$, were obtained in the PZT composition complexly doped with $La^{+3}$ and $Fe^{+3}$. From the results obtained in this study, the properties of compositionally modified PZT ceramics can also be tailored over a wider range by changing the dopant compositions to meet the specific requirements for underwater or other applications.

사파이어 기판방향에 따른 GaN 박막의 표면탄성파 특성에 대한 이론적 계산 (Theoretical Calculation of SAW Propagation of GaN/Sapphire Structure according to SAW Propagation Direction)

  • 임근환;김영진;최국현;김범석;김형준;김수길;신영화
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.539-546
    • /
    • 2003
  • GaN/사파이어 박막구조는 높은 SAW속도로 인해 고주파 소자로 이용될 가능성이 있다. 일반적으로, GaN 박막은 사파이어의 c, a, 그리고 r-면에 성장한다. 본 연구에서는 사파이어의 기판과 GaN 박막사이의 결정학적 관계에 따라 GaN/사파이어 구조의 파동 방정식을 계산하였다. 각각의 면에서, GaN의 kH와 사파이어의 기판방향에 따라 전단속도가 변화하였다. 그 결과 r-면의 경우 전기기계결합계수가 우수했다. 즉, 재료의 탄성상수와 전기기계결합계수는 기판의 cut 방향과 방향성에 좌우된다. 또한, GaN/r-면 사파이어는 전기기계결합계수가 우수하므로 고주파수 대역 SAW 소자 응용에 보다 더 좋을 것이다.

(Na,K)NbO3계 무연 압전체에서 Cu2O 첨가물의 농도 변화에 따른 미세구조 및 전기적 특성 평가 (Evaluation of Microstructure and Electrical Properties in (Na,K)NbO3-Based Pb-free Piezoelectrics Doped with Various Cu2O Concentration)

  • 이윤기;류성림;권순용
    • 한국전기전자재료학회논문지
    • /
    • 제24권11호
    • /
    • pp.870-875
    • /
    • 2011
  • The $(Na_{0.52}K_{0.44})(Nb_{0.9}Sb_{0.06})O_3-0.04dLiTaO_3$ (NKNS-LT) ceramics with various $Cu_2O$ concentration were prepared by the conventional solid state reaction method. The $Cu_2O$ content was varied in the range of 0.1~0.4 wt%. The effects of Cu on microstructure, crystallographic phase transition, and piezoelectric properties were investigated. The material with perovskite structure had a tetragonal phase (T1) when $Cu_2O$ concentration was less than 0.3 wt% and it transformed to another tetragonal phase (T2) when the $Cu_2O$ amount was greater than 0.3 wt%. The phase boundary between T1 and T2 phases appeared at around 0.3 wt% of $Cu_2O$ concentration. The piezoelectric properties were shown the maximum values at the composition of the phase boundary. The electro-mechanical coupling factor ($k_p$) was 0.42 and the piezoelectric charge constant ($d_{33}$) was 245 pC/N at the 0.3 wt% of $Cu_2O$ concentration.

Ring-Type Rotary Ultrasonic Motor Using Lead-free Ceramics

  • Hong, Chang-Hyo;Han, Hyoung-Su;Lee, Jae-Shin;Wang, Ke;Yao, Fang-Zhou;Li, Jing-Feng;Gwon, Jung-Ho;Quyet, Nguyen Van;Jung, Jin-Kyung;Jo, Wook
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.228-231
    • /
    • 2015
  • Ultrasonic motors provide high torques and quick responses compared to their magnetic counterparts; therefore, they are widely used in small-scale applications such as mobile phones, microrobots, and auto-focusing modules in digital cameras. To determine the feasibility of lead-free piezoceramics for ultrasonic motor applications, we fabricated a ring-type piezoceramic with a KNN-based lead-free piezoceramic (referred to as CZ5), intended for use in an auto-focusing module of a digital camera. The vibration of the lead-free stator was observed at 45.1 kHz. It is noteworthy that the fully assembled lead-free ultrasonic motor exhibited a revolution speed of 5-7 rpm, even though impedance matching with neighboring components was not considered. This result suggests that the tested KNN-based piezoceramic has great potential for use in ultrasonic motor applications, requiring minimal modifications to existing lead-based systems.

NiO와 $MnO_2$ 의 첨가가 PLZT의 유전특성과 압전특성 및 분극반전특성에 미치는 효과 (The Effect of NiO and $MnO_2$ Addition on the Dielectric Piezoelectric and Polarization-Reversal Properties of PLZT)

  • 조경익;주웅길;고경신
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.315-323
    • /
    • 1983
  • Effect of NiO and $MnO_2$ addtivies on the dielectric piezoelectrics and polarization-reversal properties of $(Pb_{0.936} La_{0.064})$$(Zr_{0.60}Ti_{0.40})O_3$ ceramics have been investigated. The specimens were prepared by the mixed oxide techni-que and atmosphere sintering method. The room temperature X-ray diffraction studies show that perfect perovskite solution with tetragonal structure was obtained from PLZT and its additives. The dielectric constant and dissipation factor decreased with the addition of both NiO and $MnO_2$ The Curie of Curie temperature was not observed but they displayed broadened maxima. The planar coupling factor was improved by addition of NiO and also increased with increasing sintering time carried out at 105$0^{\circ}C$ Addition of $MnO_2$ yielded a markedly high mechanical quality factor. The space-charge field decreased with the addition of NiO but increased with the addition of $MnO_2$ The planar coupling factor and space-charge field showed same dependence on the additivies. The tetragonality Curie temperature and planar coupling factor of $(Pb_{0.936} La_{0.064})$$(Zr_{0.60}Ti_{0.40})O_3$ were higher than those of $(Pb_{0.936} La_{0.064})$$(Zr_{0.568}NU_{0.032}Ti_{0.40})_{0.984}O_3$ but the grain size lattic parameter dielectric constant dissipation factor mechanical quality factor and space-charge field of the former were lower than those of the latter.

  • PDF

컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구 (A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration)

  • 김창일;이민선;조정호;백종후;장용호;최범진;손천명;서덕기;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.