DOI QR코드

DOI QR Code

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Hong, Chang-Hyo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Young-Jin (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Choi, Gangho (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Shin, Dong-Jin (Korea Electrotechnology Research Institute) ;
  • Lim, Dong-Hwan (Korea Electrotechnology Research Institute) ;
  • Jeong, Soon-Jong (Korea Electrotechnology Research Institute) ;
  • Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2019.09.11
  • Accepted : 2019.10.01
  • Published : 2019.11.30

Abstract

More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

Keywords

References

  1. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  2. H.-P. Kim, C. W. Ahn, Y. Hwang, H.-Y. Lee, and W. Jo, "Strategies of a Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs," J. Korean Ceram. Soc., 54 [2] 86-95 (2017). https://doi.org/10.4191/kcers.2017.54.2.12
  3. T.-G. Lee and S. Nahm, "Review of Sintering Technologies, Structural Characteristics, and Piezoelectric Properties of NKN-Based Lead-Free Ceramics," Trans. Electr. Electron. Mater., 20 [5] 385-402 (2019). https://doi.org/10.1007/s42341-019-00134-6
  4. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, and D. J. Green, "$(K,Na)NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715
  5. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012). https://doi.org/10.1007/s10832-012-9742-3
  6. C. W. Ahn, C.-H. Hong, B.-Y. Choi, H.-P. Kim, H.-S. Han, Y. Hwang, W. Jo, K. Wang, J.-F. Li, J.-S. Lee, and I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68 [12] 1481-94 (2016). https://doi.org/10.3938/jkps.68.1481
  7. Z. Luo, J. Glaum, T. Granzow, W. Jo, R. Dittmer, M. Hoffman, and J. Rodel, "Bipolar and Unipolar Fatigue of Ferroelectric BNT-Based Lead-Free Piezoceramics," J. Am. Ceram. Soc., 94 [2] 529-35 (2011). https://doi.org/10.1111/j.1551-2916.2010.04101.x
  8. Z. Luo, T. Granzow, J. Glaum, W. Jo, J. Rodel, and M. Hoffman, "Effect of Ferroelectric Long-Range Order on the Unipolar and Bipolar Electric Fatigue in $Bi_{1/2}Na_{1/2}TiO_3$-Based Lead-Free Piezoceramics," J. Am. Ceram. Soc., 94 [11] 3927-33 (2011). https://doi.org/10.1111/j.1551-2916.2011.04605.x
  9. C.-H. Hong, H. Guo, X. Tan, J. E. Daniels, and W. Jo, "Polarization Reversal Via a Transient Relaxor State in Nonergodic Relaxors near Freezing Temperature," J. Materiomics, online published, doi: 10.1016/j.jmat.2019.06.004.
  10. W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in $(K_{0.5}Na_{0.5})NbO_3$-Modified $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009). https://doi.org/10.1063/1.3121203
  11. H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.-K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013). https://doi.org/10.1063/1.4801893
  12. C. H. Lee, H. S. Han, T. A. Duong, T. H. Dinh, C. W. Ahn, and J. S. Lee, "Stabilization of the Relaxor Phase by Adding CuO in Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3-SrTiO_3-BiFeO_3$ Ceramics," Ceram. Int., 43 [14] 11071-77 (2017). https://doi.org/10.1016/j.ceramint.2017.05.152
  13. V. D. N. Tran, H.-S. Han, C.-H. Yoon, J.-S. Lee, W. Jo, and J. Rodel, "Lead-Free Electrostrictive Bismuth Perovskite Ceramics with Thermally Stable Field-Induced Strains," Mater. Lett., 65 [17-18] 2607-9 (2011). https://doi.org/10.1016/j.matlet.2011.05.059
  14. G. Wang, Y.-H. Hong, H. T. K. Nguyen, B. W. Kim, C. W. Ahn, H.-S. Han, and J.-S. Lee, "High Electromechanical Strain Properties in $SrTiO_3$-Modified $Bi_{1/2}Na_{1/2}TiO_3-KTaO_3$ Lead-Free Piezoelectric Ceramics under Low Electric Field," Sens. Actuators, A, 293 1-6 (2019).
  15. K. Wang, A. Hussain, W. Jo, J. Rodel, and D. D. Viehland, "Temperature-Dependent Properties of $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3-SrTiO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 95 [7] 2241-47 (2012). https://doi.org/10.1111/j.1551-2916.2012.05162.x
  16. H. S. Han, I. K. Hong, Y.-M. Kong, J. S. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94$(Bi_{1/2}Na_{1/2})TiO_3$-0.06$BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016). https://doi.org/10.4191/kcers.2016.53.2.145
  17. T. Sebastian, I. Sterianou, I. M. Reaney, T. Leist, W. Jo, and J. Rodel, "Piezoelectric Activity of $(1-x)[0.35Bi(Mg_{1/2}Ti_{1/2})O_3-0.3BiFeO_3-0.35BiScO_3]-xPbTiO_3$ Ceramics as a Function of Temperature," J. Electroceram., 28 [2-3] 95-100 (2012). https://doi.org/10.1007/s10832-012-9685-8
  18. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3$-6mol% $BaTiO_3$," J. Appl. Phys., 110 [7] 074106 (2011). https://doi.org/10.1063/1.3645054
  19. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large Electrostrain near the Phase Transition Temperature of $(Bi_{0.5}Na_{0.5})TiO_3-SrTiO_3$ Ferroelectric Ceramics," Appl. Phys. Lett., 92 [26] 262904 (2008). https://doi.org/10.1063/1.2955533
  20. B. Liu, X. Liu, P. Li, F. Li, B. Shen, and J. Zhai, "Improving Piezoelectric Properties by Controlling Phase Structure and Crystal Orientation," RSC Adv., 7 [66] 41788-95 (2017). https://doi.org/10.1039/C7RA07711D
  21. S. Gebhardt, D.Ernst, B.Bramlage, O.Pabst, and A.Oberdorster, "Micro-Position Stages for Adaptive Optics Based on Piezoelectric Thick Film Actuators," J. Ceram. Sci. Technol., 06 [04] 285-90 (2015).
  22. C.-H. Hong, H.-S. Han, J.-S. Lee, K. Wang, F.-Z. Yao, J.-F. Li, J.-H. Gwon, N. V. Quyet, J.-K. Jung, and W. Jo, "Ring-Type Rotary Ultrasonic Motor Using Lead-Free Ceramics," J. Sens. Sci. Technol, 24 [4] 228-31 (2015). https://doi.org/10.5369/JSST.2015.24.4.228
  23. S.-Y. Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J. H. Cho, B. I. Kim, and Y. Ikuhara, "Gigantic Electrostrain in Duplex Structured Alkaline Niobates," Chem. Mater., 24 [17] 3363-69 (2012). https://doi.org/10.1021/cm301324h
  24. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H.-J. Kleebe, S.-J. Jeong, J.-S. Lee, and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24 [3] 356-62 (2014). https://doi.org/10.1002/adfm.201302102
  25. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$," Appl. Phys. Lett., 99 [6] 062906 (2011). https://doi.org/10.1063/1.3621878
  26. D. S. Lee, S. Jong Jeong, M. Soo Kim, and J. Hyuk Koh, "Electric Field Induced Polarization and Strain of Bi-Based Ceramic Composites," J. Appl. Phys., 112 [12] 124109 (2012). https://doi.org/10.1063/1.4770372
  27. P. Fan, Y. Zhang, Y. Zhu, W. Ma, K. Liu, X. He, M. A. Marwat, B. Xie, M. Li, and H. Zhang, "Large Strain under Low Driving Field in Lead-Free Relaxor/Ferroelectric Composite Ceramics," J. Am. Ceram. Soc., 102 [7] 4113-26 (2019). https://doi.org/10.1111/jace.16256
  28. M. A. Qaiser, A. Hussain, J. Zhang, Y. Wang, S. Zhang, L. Chen, and G. Yuan, "0-3 Type $Bi_3TaTiO_9:40wt%BiFeO_3$ Composite with Improved High-Temperature Piezoelectric Properties," J. Alloys Compd., 740 1-6 (2018). https://doi.org/10.1016/j.jallcom.2017.12.365
  29. C.-W. Tao, X.-Y. Geng, J. Zhang, R.-X. Wang, Z.-B. Gu, and S.-T. Zhang, "$Bi_{0.5}Na_{0.5}TiO_3$-$BaTiO_3$-$K_{0.5}Na_{0.5}NbO_3:ZnO$ Relaxor Ferroelectric Composites with High Breakdown Electric Field and Large Energy Storage Properties," J. Eur. Ceram. Soc., 38 [15] 4946-52 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.006
  30. A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, J. S. Kim, and I. W. Kim, "Effect of Potassium Concentration on the Structure and Electrical Properties of Lead-Free $Bi_{0.5}(Na,K))_{0.5}TiO_3-BiAlO_3$ Piezoelectric Ceramics," J. Alloys Compd., 509 [6] 3148-54 (2011). https://doi.org/10.1016/j.jallcom.2010.12.027

Cited by

  1. A Magneto-Mechano-Electric Generator Based on Lead-Free Single-Crystal Fibers for Robust Scavenging of Ambient Magnetic Energy vol.16, pp.4, 2020, https://doi.org/10.1007/s13391-020-00215-2
  2. Significant power enhancement of magneto-mechano-electric generators by magnetic flux concentration vol.13, pp.11, 2019, https://doi.org/10.1039/d0ee01574a
  3. Large electromechanical strain response in BiFeO3-BaTiO3-based ceramics at elevated temperature vol.156, 2019, https://doi.org/10.1016/j.jpcs.2021.110133
  4. Functional Polymer Composites Using Multiferroic Ceramic Nanofillers vol.24, pp.3, 2019, https://doi.org/10.31613/ceramist.2021.24.3.06
  5. Effect of Internal Bias Field on Poling Behavior in Mn-Doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 Single Crystal vol.34, pp.5, 2019, https://doi.org/10.4313/jkem.2021.34.5.382