DOI QR코드

DOI QR Code

Effect of Internal Bias Field on Poling Behavior in Mn-Doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 Single Crystal

  • Lee, Geon-Ju (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute of Advanced Energy Research, Ulsan National Institute of Science and Technology) ;
  • Kim, Hwang-Pill (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute of Advanced Energy Research, Ulsan National Institute of Science and Technology) ;
  • Lee, Ho-Yong (Department of Materials Science and Engineering, Sun Moon University) ;
  • Jo, Wook (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute of Advanced Energy Research, Ulsan National Institute of Science and Technology)
  • Received : 2021.08.13
  • Accepted : 2021.08.14
  • Published : 2021.09.01

Abstract

Electrical poling is a crucial step to convert ferroelectrics to piezoelectrics. Nevertheless, no systematic investigation on the effect of poling has been reported. Given that the poling involves an alignment of spontaneous polarization, the condition for poling should be different when a material has an internal bias field that influences the domain stability. Here, we present the effect of poling profile on the dielectric and piezoelectric properties in Mn-doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 single crystal with an internal bias field. We showed that both the dielectric permittivity and the piezoelectric coefficient were further enhanced when the poling procedure ends with a field application along the opposite direction to the internal bias field. We expect that the current finding would give a clue to understanding the true mechanism for the electrical poling.

Keywords

Acknowledgement

This research was supported by the Leading Foreign Research Institute Recruitment Program (No.2017K1A4A3015437) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT.

References

  1. C. A. Randall, R. E. Newnham, and L. E. Cross, Materials Research Institute, The Pennsylvania State University, University Park, Pa, USA 1 (2004).
  2. S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, and T. Kiguchi, J. Appl. Phys., 98, 014109 (2005). [DOI: https://doi.org/10.1063/1.1957130]
  3. B. Jaffe, R. S. Roth, and S. Marzullo, J. Appl. Phys., 25, 809 (1954). [DOI: https://doi.org/10.1063/1.1721741]
  4. J. S. Choi, C. H. Lee, H. S. Shin, D. H. Yeo, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 19 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.1.19]
  5. W. S. Kang, C. H. Hong, Y. J. Lee, G. Choi, D. J. Shin, D. H. Lim, S. J. Jeong, and W. Jo, J. Korean Ceram. Soc., 56, 549 (2019). [DOI: https://doi.org/10.4191/kcers.2019.56.6.03]
  6. S. W. Kim and J. H. Yoo, Trans. Electr. Electron. Mater., 20, 426 (2019). [DOI: https://doi.org/10.1007/s42341-019-00139-1]
  7. Y. A. Genenko, S. Zhukov, S. V. Yampolskii, J. Schutrumpf, R. Dittmer, W. Jo, H. Kungl, M. J. Hoffmann, and H. von Seggern, Adv. Funct. Mater., 22, 2058 (2012). [DOI: https://doi.org/10.1002/adfm.201102841]
  8. N. Yamamoto, Y. Yamashita, Y. Hosono, K. Itsumi, and K. Higuchi, (Google Patents, 2018).
  9. Y. Yamashita, N. Yamamoto, Y. Hosono, and K. Itsumi, (Google Patents, 2018).
  10. Y. H. Chen, S. Hirose, D. Viehland, S. Takahashi, and K. Uchino, Jpn. J. Appl. Phys., 39, 4843 (2000). [DOI: https://doi.org/10.1143/jjap.39.4843]
  11. H. T. Oh, H. J. Joo, M. C. Kim, and H. Y. Lee, J. Korean Ceram. Soc., 55, 166 (2018). [DOI: https://doi.org/10.4191/kcers.2018.55.2.04]
  12. A. Thakre, A. Kumar, D. Y. Jeong, G. T. Hwang, W. H. Yoon, H. Y. Lee, and J. Ryu, Electron. Mater. Lett., 16, 156 (2020). [DOI: https://doi.org/10.1007/s13391-019-00195-y]
  13. S. Zhang, F. Li, F. Yu, X. Jiang, H. Y. Lee, J. Luo, and T. R. Shrout, J. Korean Ceram. Soc., 55, 419 (2018). [DOI: https://doi.org/10.4191/kcers.2018.55.5.12]